scholarly journals Identification of a Clinically Relevant Signature for Early Progression in KRAS-Driven Lung Adenocarcinoma

Cancers ◽  
2019 ◽  
Vol 11 (5) ◽  
pp. 600 ◽  
Author(s):  
Neidler ◽  
Kruspig ◽  
Hewit ◽  
Monteverde ◽  
Gyuraszova ◽  
...  

Inducible genetically defined mouse models of cancer uniquely facilitate the investigation of early events in cancer progression, however, there are valid concerns about the ability of such models to faithfully recapitulate human disease. We developed an inducible mouse model of progressive lung adenocarcinoma (LuAd) that combines sporadic activation of oncogenic KRasG12D with modest overexpression of c-MYC (KM model). Histological examination revealed a highly reproducible spontaneous transition from low-grade adenocarcinoma to locally invasive adenocarcinoma within 6 weeks of oncogene activation. Laser-capture microdissection coupled with RNA-SEQ (ribonucleic acid sequencing) was employed to determine transcriptional changes associated with tumour progression. Upregulated genes were triaged for relevance to human LuAd using datasets from Oncomine and cBioportal. Selected genes were validated by RNAi screening in human lung cancer cell lines and examined for association with lung cancer patient overall survival using KMplot.com. Depletion of progression-associated genes resulted in pronounced viability and/or cell migration defects in human lung cancer cells. Progression-associated genes moreover exhibited strong associations with overall survival, specifically in human lung adenocarcinoma, but not in squamous cell carcinoma. The KM mouse model faithfully recapitulates key molecular events in human adenocarcinoma of the lung and is a useful tool for mechanistic interrogation of KRAS-driven LuAd progression.

Author(s):  
Sarah Neidler ◽  
Björn Kruspig ◽  
Kay Hewit ◽  
Tiziana Monteverde ◽  
Katarina Gyuraszova ◽  
...  

Inducible genetically defined mouse models of cancer uniquely facilitate the investigation of early events in cancer progression, however there are valid concerns about the ability of such models to faithfully recapitulate human disease.  We developed an inducible mouse model of progressive lung adenocarcinoma (LuAd) that combines sporadic activation of oncogenic KRasG12D with modest overexpression of c-MYC (KM model). Histological examination revealed a highly reproducible transition from adenoma to locally invasive adenocarcinoma within 6 weeks of oncogene activation.  Laser-capture microdissection coupled with RNA-SEQ was employed to determine transcriptional changes associated with tumour progression.  Upregulated genes were triaged for relevance to human LuAd using datasets from Oncomine and cBioportal.  Selected genes were validated by RNAi screening in human lung cancer cell lines and examined for association with lung cancer patient overall survival using KMplot.com.  Depletion of progression-associated genes resulted in pronounced viability and/or cell migration defects in human lung cancer cells.  Progression-associated genes moreover exhibited strong associations with overall survival, specifically in human lung adenocarcinoma, but not in squamous cell carcinoma. The KM mouse model faithfully recapitulates key molecular events in human lung cancer and is a useful tool for mechanistic interrogation of LuAd progression.


2020 ◽  
Vol 48 (01) ◽  
pp. 201-222
Author(s):  
Hsu-Kai Huang ◽  
Shin-Yi Lee ◽  
Shu-Fen Huang ◽  
Yu-San Lin ◽  
Shih-Chi Chao ◽  
...  

Aggressive tumor cells mainly rely on glycolysis, and further release vast amounts of lactate and protons by monocarboxylate transporter (MCT), which causes a higher intracellular pH (pHi) and acidic extracellular pH. Isoorientin, a principle flavonoid compound extracted from several plant species, shows various pharmacological activities. However, effects of isoorientin on anticancer and MCT await to explore in human lung cancer cells. Human lung cancer tissues were obtained from cancer patients undergoing surgery, while the human lung adenocarcinoma cells (A549) were bought commercially. Change of pHi was detected by microspectrofluorometry method with a pH-sensitive fluorescent dye, BCECF. MTT and wound-healing assay were used to detect the cell viability and migration, respectively. Western blot techniques and immunocytochemistry staining were used to detect the protein expression. Our results indicated that the expression of MCTs1/4 and CD147 were upregulated significantly in human lung tissues. In experiments of A549 cells, under HEPES-buffer, the resting pHi was 7.47, and isoorientin (1–300[Formula: see text][Formula: see text]M) inhibited functional activity of MCT concentration-dependently (up to [Formula: see text]%). Pretreatment with isoorientin (3–100[Formula: see text][Formula: see text]M) for 24[Formula: see text]h, MCT activity and cell migration were significantly inhibited ([Formula: see text]% and [Formula: see text]%, respectively), while the cell viability was not affected. Moreover, the expression of MCTs1/4, CD147, and matrix metalloproteinase (MMP) 2/9 were significantly down regulated. In summary, MCTs1/4 and CD147 are significantly upregulated in human lung adenocarcinoma tissues, and isoorientin inhibits cells-migration by inhibiting activity/expression of MCTs1/4 and MMPs2/9 in human lung cancer cells. These novel findings suggest that isoorientin could be a promising pharmacological agent for lung cancer.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Ronggang Luo ◽  
Yi Zhuo ◽  
Quan Du ◽  
Rendong Xiao

Abstract Background To detect and investigate the expression of POU domain class 2 transcription factor 2 (POU2F2) in human lung cancer tissues, its role in lung cancer progression, and the potential mechanisms. Methods Immunohistochemical (IHC) assays were conducted to assess the expression of POU2F2 in human lung cancer tissues. Immunoblot assays were performed to assess the expression levels of POU2F2 in human lung cancer tissues and cell lines. CCK-8, colony formation, and transwell-migration/invasion assays were conducted to detect the effects of POU2F2 and AGO1 on the proliferaion and motility of A549 and H1299 cells in vitro. CHIP and luciferase assays were performed for the mechanism study. A tumor xenotransplantation model was used to detect the effects of POU2F2 on tumor growth in vivo. Results We found POU2F2 was highly expressed in human lung cancer tissues and cell lines, and associated with the lung cancer patients’ prognosis and clinical features. POU2F2 promoted the proliferation, and motility of lung cancer cells via targeting AGO1 in vitro. Additionally, POU2F2 promoted tumor growth of lung cancer cells via AGO1 in vivo. Conclusion We found POU2F2 was highly expressed in lung cancer cells and confirmed the involvement of POU2F2 in lung cancer progression, and thought POU2F2 could act as a potential therapeutic target for lung cancer.


2019 ◽  
Vol 41 (4) ◽  
pp. 527-538 ◽  
Author(s):  
Mohamed I Saad ◽  
Louise McLeod ◽  
Liang Yu ◽  
Hiromichi Ebi ◽  
Saleela Ruwanpura ◽  
...  

Abstract Lung cancer is the leading cause of cancer-related mortality, with most cases attributed to tobacco smoking, in which nicotine-derived nitrosamine ketone (NNK) is the most potent lung carcinogen. The ADAM17 protease is responsible for the ectodomain shedding of many pro-tumorigenic cytokines, growth factors and receptors, and therefore is an attractive target in cancer. However, the role of ADAM17 in promoting tobacco smoke carcinogen-induced lung carcinogenesis is unknown. The hypomorphic Adam17ex/ex mice—characterized by reduced global ADAM17 expression—were backcrossed onto the NNK-sensitive pseudo-A/J background. CRISPR-driven and inhibitor-based (GW280264X, and ADAM17 prodomain) ADAM17 targeting was employed in the human lung adenocarcinoma cell lines A549 and NCI-H23. Human lung cancer biopsies were also used for analyses. The Adam17ex/ex mice displayed marked protection against NNK-induced lung adenocarcinoma. Specifically, the number and size of lung lesions in NNK-treated pseudo-A/J Adam17ex/ex mice were significantly reduced compared with wild-type littermate controls. This was associated with lower proliferative index throughout the lung epithelium. ADAM17 targeting in A549 and NCI-H23 cells led to reduced proliferative and colony-forming capacities. Notably, among select ADAM17 substrates, ADAM17 deficiency abrogated shedding of the soluble IL-6 receptor (sIL-6R), which coincided with the blockade of sIL-6R-mediated trans-signaling via ERK MAPK cascade. Furthermore, NNK upregulated phosphorylation of p38 MAPK, whose pharmacological inhibition suppressed ADAM17 threonine phosphorylation. Importantly, ADAM17 threonine phosphorylation was significantly upregulated in human lung adenocarcinoma with smoking history compared with their cancer-free controls. Our study identifies the ADAM17/sIL-6R/ERK MAPK axis as a candidate therapeutic strategy against tobacco smoke-associated lung carcinogenesis.


2014 ◽  
Vol 20 (6) ◽  
pp. 1610-1622 ◽  
Author(s):  
Oliver Delgado ◽  
Kimberly G. Batten ◽  
James A. Richardson ◽  
Xian-Jin Xie ◽  
Adi F. Gazdar ◽  
...  

2003 ◽  
Vol 200 (5) ◽  
pp. 640-646 ◽  
Author(s):  
Yuan Chen ◽  
Thomas Knösel ◽  
Glen Kristiansen ◽  
Agnieszka Pietas ◽  
Mitchell E Garber ◽  
...  

1998 ◽  
Vol 77 (2) ◽  
pp. 270-276 ◽  
Author(s):  
S Petersen ◽  
G Wolf ◽  
U Bockmühl ◽  
K Gellert ◽  
M Dietel ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document