scholarly journals PD-L1 Expression with Epithelial Mesenchymal Transition of Circulating Tumor Cells Is Associated with Poor Survival in Curatively Resected Non-Small Cell Lung Cancer

Cancers ◽  
2019 ◽  
Vol 11 (6) ◽  
pp. 806 ◽  
Author(s):  
Yariswamy Manjunath ◽  
Sathisha V. Upparahalli ◽  
Diego M. Avella ◽  
Chelsea B. Deroche ◽  
Eric T. Kimchi ◽  
...  

In addition to the FDA-approved definition of a circulating tumor cell (CTC), various CTC phenotypes have been discovered. Epithelial-mesenchymal transition (EMT) of cancer cells is directly linked to PD-L1 upregulation. The goal of the study was to investigate PD-L1 expression and EMT in CTCs of non-small cell lung cancer (NSCLC) patients, and perform an outcome analysis. Prospectively, 7.5 mL peripheral blood was collected from 30 NSCLC patients that underwent surgery and 15 healthy controls. CTCs were enriched by size-based microfilter and immunofluorescence stainings performed (cytokeratin (CK) 8/18/19, EpCAM, CD45, PD-L1, EMT markers vimentin, and N-Cadherin, DAPI). Patient-matched NSCLC tissues were also stained. CTC staining intensity was quantified with a software and correlated with patient-matched NSCLC tissues and survival. PD-L1 and EMT markers were expressed at significantly higher proportions in CTCs than patient-matched NSCLC tissues (p < 0.05); ≥3 PD-L1pos/EMTposCTCs were associated with significantly poorer survival after curative surgery (p < 0.05). No CTCs were detected in 15 healthy controls. This study shows that PD-L1 expression and EMT of CTCs is a negative survival predictor for NSCLC patients. The therapeutic role of the molecular linkage of PD-L1 and EMT will need to be further investigated, as linked pathways could be targeted to improve NSCLC outcome.

2020 ◽  
Vol 27 (39) ◽  
pp. 6573-6595
Author(s):  
Hongmei Cui ◽  
Kinsie Arnst ◽  
Duane D. Miller ◽  
Wei Li

Paclitaxel (PTX) is a first-line drug for late-stage non-small cell lung cancer (NSCLC) patients who do not benefit from targeted therapy or immunotherapy. However, patients invariably develop resistance to PTX upon prolonged treatments. Although diverse mechanisms leading to PTX resistance have been well-documented in the literature, strategies to overcome PTX resistance in NSCLC based on these mechanisms are still challenging. In this article, we reviewed recent advancements elucidating major mechanisms of PTX resistance in NSCLC, including the overexpression of ABC transporters, alternations to tubulin structures, and the involvement of cytokines, miRNAs, kinase signaling pathways, and epithelial-mesenchymal transition. Potential markers of PTX resistance or PTX response that could help to direct treatment decisions and restore cellular sensitivity to PTX were also discussed. Finally, we summarized the corresponding strategies to overcome PTX resistance in NSCLC cells, which might provide new insights into clinical trials and benefit lung cancer patients in the future.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Lan-Lan Lin ◽  
Fan Yang ◽  
Dong-Huan Zhang ◽  
Cong Hu ◽  
Sheng Yang ◽  
...  

Abstract Background Rho GTPase activating protein 10 (ARHGAP10) has been implicated as an essential element in multiple cellular process, including cell migration, adhesion and actin cytoskeleton dynamic reorganization. However, the correlation of ARHGAP10 expression with epithelial–mesenchymal transition (EMT) in lung cancer cells is unclear and remains to be elucidated. Herein, we investigated the relationship between the trait of ARHGAP10 and non-small cell lung cancer (NSCLC) pathological process. Methods Immunohistochemistry was conducted to evaluate the expression of ARHGAP10 in NSCLC tissues. CCK-8 assays, Transwell assays, scratch assays were applied to assess cell proliferation, invasion and migration. The expression levels of EMT biomarkers and active molecules involved in PI3K/Akt/GSK3β signaling pathway were examined through immunofluorescence and Western blot. Results ARHGAP10 was detected to be lower expression in NSCLC tissues compared with normal tissues from individuals. Moreover, overexpression of ARHGAP10 inhibited migratory and invasive potentials of A549 and NCI-H1299 cells. In addition, ARHGAP10 directly mediated the process of EMT via PI3K/Akt/GSK3β pathway. Meanwhile, activation of the signaling pathway of insulin-like growth factors-1 (IGF-1) reversed ARHGAP10 overexpression regulated EMT in NSCLC cells. Conclusion ARHGAP10 inhibits the epithelial–mesenchymal transition in NSCLC via PI3K/Akt/GSK3β signaling pathway, suggesting agonist of ARHGAP10 may be an optional remedy for NSCLC patients than traditional opioids.


2018 ◽  
Vol 45 (6) ◽  
pp. 2213-2224 ◽  
Author(s):  
Meng Zhao ◽  
Yahui Liu ◽  
Ran Liu ◽  
Jin Qi ◽  
Yongwang Hou ◽  
...  

Background/Aims: Cytokines are key players in tumorigenesis and are potential targets in cancer treatment. Although IL-6 has attracted considerable attention, interleukin 11 (IL-11), another member of the IL-6 family, has long been overlooked, and little is known regarding its specific function in non-small cell lung cancer (NSCLC). In this study, we explored IL-11’s role in NSCLC and the detailed mechanism behind it. Methods: Cell proliferation in response to IL-11 was determined by colony formation, BrdU incorporation and MTS (3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium) assay. Cell motility was measured by Transwell and wound healing assays. NSCLC xenograft models were used to confirm oncogenic function of IL-11 in vivo. Immunohistochemical staining and western blot assay were performed to detect epithelial–mesenchymal transition (EMT) markers and cell signaling pathway alterations. Eighteen NSCLC patients and 5 normal lung samples were collected together with data from an online database to determine the link between IL-11 expression and malignant progression. Results: We observed that IL-11 was upregulated in NSCLC samples compared with normal tissue samples and correlated with poor prognosis. Data from in vitro and in vivo models indicated that IL-11 promotes cell proliferation and tumorigenesis. Cell migration and invasion were also enhanced by IL-11. Epithelial–mesenchymal transition (EMT) was also observed after IL-11 incubation. Furthermore, IL-11 activated AKT and STAT3 in our experimental models. In addition, we observed that hypoxia induced IL-11 expression in NSCLC cells. Deferoxamine (DFX) or dimethyloxalylglycine (DMOG) induced hypoxia-inducible factor 1-alpha (HIF1α) upregulation, which enhanced IL-11 expression in NSCLC cells. Conclusions: Taken together, our results indicate that IL-11 is an oncogene in NSCLC, and elucidating the mechanism behind it may provide insights for NSCLC treatment.


2017 ◽  
Vol 38 (10) ◽  
pp. 1029-1035 ◽  
Author(s):  
Kunlin Xie ◽  
Yuanqing Ye ◽  
Yong Zeng ◽  
Jian Gu ◽  
Hushan Yang ◽  
...  

Aging ◽  
2019 ◽  
Vol 11 (17) ◽  
pp. 6734-6761 ◽  
Author(s):  
Chunhua Wei ◽  
Ruiguang Zhang ◽  
Qian Cai ◽  
Xican Gao ◽  
Fan Tong ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document