scholarly journals Radioiodine-Refractory Thyroid Cancer: Molecular Basis of Redifferentiation Therapies, Management, and Novel Therapies

Cancers ◽  
2019 ◽  
Vol 11 (9) ◽  
pp. 1382 ◽  
Author(s):  
Mohamed Aashiq ◽  
Deborah A. Silverman ◽  
Shorook Na’ara ◽  
Hideaki Takahashi ◽  
Moran Amit

Recurrent, metastatic disease represents the most frequent cause of death for patients with thyroid cancer, and radioactive iodine (RAI) remains a mainstay of therapy for these patients. Unfortunately, many thyroid cancer patients have tumors that no longer trap iodine, and hence are refractory to RAI, heralding a poor prognosis. RAI-refractory (RAI-R) cancer cells result from the loss of thyroid differentiation features, such as iodide uptake and organification. This loss of differentiation features correlates with the degree of mitogen-activated protein kinase (MAPK) activation, which is higher in tumors with BRAF (B-Raf proto-oncogene) mutations than in those with RTK (receptor tyrosine kinase) or RAS (rat sarcoma) mutations. Hence, inhibition of the mitogen-activated protein kinase kinase-1 and -2 (MEK-1 and -2) downstream of RAF (rapidly accelerated fibrosarcoma) could sensitize RAI refractivity in thyroid cancer. However, a significant hurdle is the development of secondary tumor resistance (escape mechanisms) to these drugs through upregulation of tyrosine kinase receptors or another alternative signaling pathway. The sodium iodide symporter (NIS) is a plasma membrane glycoprotein, a member of solute carrier family 5A (SLC5A5), located on the basolateral surfaces of the thyroid follicular epithelial cells, which mediates active iodide transport into thyroid follicular cells. The mechanisms responsible for NIS loss of function in RAI-R thyroid cancer remains unclear. In a study of patients with recurrent thyroid cancer, expression levels of specific ribosomal machinery—namely PIGU (phosphatidylinositol glycan anchor biosynthesis class U), a subunit of the GPI (glycosylphosphatidylinositol transamidase complex—correlated with RAI avidity in radioiodine scanning, NIS levels, and biochemical response to RAI treatment. Here, we review the proposed mechanisms for RAI refractivity and the management of RAI-refractive metastatic, recurrent thyroid cancer. We also describe novel targeted systemic agents that are in use or under investigation for RAI-refractory disease, their mechanisms of action, and their adverse events.

2004 ◽  
Vol 381 (2) ◽  
pp. 437-446 ◽  
Author(s):  
Anderson A. ANDRADE ◽  
Patrícia N. G. SILVA ◽  
Anna C. T. C. PEREIRA ◽  
Lirlândia P. de SOUSA ◽  
Paulo C. P. FERREIRA ◽  
...  

Early events play a decisive role in virus multiplication. We have shown previously that activation of MAPK/ERK1/2 (mitogen-activated protein kinase/extracellular-signal-regulated kinase 1/2) and protein kinase A are pivotal for vaccinia virus (VV) multiplication [de Magalhães, Andrade, Silva, Sousa, Ropert, Ferreira, Kroon, Gazzinelli and Bonjardim (2001) J. Biol. Chem. 276, 38353–38360]. In the present study, we show that VV infection provoked a sustained activation of both ERK1/2 and RSK2 (ribosomal S6 kinase 2). Our results also provide evidence that this pattern of kinase activation depends on virus multiplication and ongoing protein synthesis and is maintained independently of virus DNA synthesis. It is noteworthy that the VGF (VV growth factor), although involved, is not essential for prolonged ERK1/2 activation. Furthermore, our findings suggest that the VV-stimulated ERK1/2 activation also seems to require actin dynamics, microtubule polymerization and tyrosine kinase phosphorylation. The VV-stimulated pathway MEK/ERK1/2/RSK2 (where MEK stands for MAPK/ERK kinase) leads to phosphorylation of the ternary complex factor Elk-1 and expression of the early growth response (egr-1) gene, which kinetically paralleled the kinase activation. The recruitment of this pathway is biologically relevant, since its disruption caused a profound effect on viral thymidine kinase gene expression, viral DNA replication and VV multiplication. This pattern of sustained kinase activation after VV infection is unique. In addition, by connecting upstream signals generated at the cytoskeleton and by tyrosine kinase, the MEK/ERK1/2/RSK2 cascade seems to play a decisive role not only at early stages of the infection, i.e. post-penetration, but is also crucial to define the fate of virus progeny.


1994 ◽  
Vol 267 (3) ◽  
pp. G401-G408 ◽  
Author(s):  
R. D. Duan ◽  
J. A. Williams

The existence and activation of mitogen-activated protein (MAP) kinase in isolated pancreatic acini have been demonstrated. Immunoblotting and immunoprecipitation revealed two forms of MAP kinase in pancreatic acini, with relative molecular masses of approximately 42 and 44 kDa. Both forms of MAP kinase were activated by cholecystokinin (CCK). The threshold concentration of CCK was approximately 3 pM, and the maximal effect occurred at 1 nM, which enhanced MAP kinase activity by 2.5-fold, as determined in polyacrylamide gel copolymerized with substrate myelin basic protein. Activation of MAP kinase by CCK was rapid, reaching a maximum within 5-10 min that subsequently declined. Bombesin and carbachol but not secretin or vasoactive intestinal peptide also activated MAP kinase. CCK-induced activation of MAP kinase may be mediated by protein kinase C, since 12-O-tetradecanoylphorbol 13-acetate (TPA) mimicked the effect of CCK and staurosporine concentration dependently inhibited the action of CCK. Treatment of acini with thapsigargin, ionomycin, or ethylene glycol-bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid did not influence MAP kinase, indicating that mobilization of intracellular calcium by CCK is not important in activation of acinar MAP kinase. CCK and TPA increased tyrosine phosphorylation of both 42- and 44-kDa forms. Genistein and tyrphostin 23, the inhibitors of tyrosine kinase, suppressed the activation of MAP kinase by CCK. In conclusion, MAP kinase in pancreatic acini is activated by agonists related to hydrolysis of phosphoinositide, via a mechanism involving protein kinase C and tyrosine kinase.


Sign in / Sign up

Export Citation Format

Share Document