Abstract 2948: c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinase (p38 MAPK) are involved in local anesthetics-induced apoptosis in human thyroid cancer cells.

Author(s):  
Shih-Ping Cheng ◽  
Yuan-Ching Chang ◽  
Yi-Chiung Hsu ◽  
Shih-Yuan Huang ◽  
Meng-Chun Hu ◽  
...  
PLoS ONE ◽  
2014 ◽  
Vol 9 (2) ◽  
pp. e89563 ◽  
Author(s):  
Yuan-Ching Chang ◽  
Yi-Chiung Hsu ◽  
Chien-Liang Liu ◽  
Shih-Yuan Huang ◽  
Meng-Chun Hu ◽  
...  

2019 ◽  
Vol 118 ◽  
pp. 109376
Author(s):  
Abdul Khalid Siraj ◽  
Rafia Begum ◽  
Roxanne Melosantos ◽  
Wafaa Albalawy ◽  
Jehan Abboud ◽  
...  

2008 ◽  
Vol 93 (3) ◽  
pp. 1020-1029 ◽  
Author(s):  
Audrey J. Robinson-White ◽  
Hui-Pin Hsiao ◽  
Wolfgang W. Leitner ◽  
Elizabeth Greene ◽  
Andrew Bauer ◽  
...  

Abstract Purpose: Protein kinase A (PKA) affects cell proliferation in many cell types and is a potential target for cancer treatment. PKA activity is stimulated by cAMP and cAMP analogs. One such substance, 8-Cl-cAMP, and its metabolite 8-Cl-adenosine (8-Cl-ADO) are known inhibitors of cancer cell proliferation; however, their mechanism of action is controversial. We have investigated the antiproliferative effects of 8-Cl-cAMP and 8-CL-ADO on human thyroid cancer cells and determined PKA’s involvement. Experimental Design: We employed proliferation and apoptosis assays and PKA activity and cell cycle analysis to understand the effect of 8-Cl-ADO and 8-Cl-cAMP on human thyroid cancer and HeLa cell lines. Results: 8-Cl-ADO inhibited proliferation of all cells, an effect that lasted for at least 4 d. Proliferation was also inhibited by 8-Cl-cAMP, but this inhibition was reduced by 3-isobutyl-1-methylxanthine; both drugs stimulated apoptosis, and 3-isobutyl-1-methylxanthine drastically reduced 8-Cl-cAMP-induced cell death. 8-Cl-ADO induced cell accumulation in G1/S or G2/M cell cycle phases and differentially altered PKA activity and subunit levels. PKA stimulation or inhibition and adenosine receptor agonists or antagonists did not significantly affect proliferation. Conclusions: 8-Cl-ADO and 8-Cl-cAMP inhibit proliferation, induce cell cycle phase accumulation, and stimulate apoptosis in thyroid cancer cells. The effect of 8-Cl-cAMP is likely due to its metabolite 8-Cl-ADO, and PKA does not appear to have direct involvement in the inhibition of proliferation by 8-Cl-ADO. 8-Cl-ADO may be a useful therapeutic agent to be explored in aggressive thyroid cancer.


2017 ◽  
Vol 43 (4) ◽  
pp. 1325-1336 ◽  
Author(s):  
Junyi  Wang ◽  
Haiou Yang ◽  
Yiran Si ◽  
Dongzhi Hu ◽  
Yang Yu ◽  
...  

Background/Aims: Iodine may trigger tumorigenesis and development of thyroid carcinoma, but the mechanisms involved remained elusive. MicroRNA (MiRNAs) are known to be involved in each stage of cancer development; however, the role of miRNAs in iodine-induced tumorigenesis of thyroid carcinoma remained unknown. In this study, we aimed at investigating miRNA related signaling pathway in thyroid cancer cells. Methods: Levels of miRNAs and mRNAs were determined using RT-qPCR and proteins were quantified by western blotting. Cell migration and proliferation were checked using Transwell assay and CCK8 assay respectively. Tumor xenografts in nude mice were established by subcutaneous injection of cancer cells. Results: Mitogen activated protein kinase 1 (MAPK1) was significantly up-regulated, while miR-422a was down-regulated in thyroid cancer cells cultured with high iodine; miR-422a directly bound to the 3’UTR of MAPK1 mRNA. Moreover, miR-422a negatively regulated MAPK1 expression, and down-regulated miR-422a promoted proliferation and migration of TPC-1 cells. In vivo studies also confirmed that iodine promoted tumor growth by suppressing miR-422a and up-regulating MAPK1. Conclusions: Our study illustrates a new pathway comprising iodine, miRNA and MAPK1, and defines a novel mechanism in thyroid cancer.


Sign in / Sign up

Export Citation Format

Share Document