scholarly journals Liquid Biopsy in Colorectal Carcinoma: Clinical Applications and Challenges

Cancers ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 1376 ◽  
Author(s):  
Drahomír Kolenčík ◽  
Stephanie N. Shishido ◽  
Pavel Pitule ◽  
Jeremy Mason ◽  
James Hicks ◽  
...  

Colorectal carcinoma (CRC) is characterized by wide intratumor heterogeneity with general genomic instability and there is a need for improved diagnostic, prognostic, and therapeutic tools. The liquid biopsy provides a noninvasive route of sample collection for analysis of circulating tumor cells (CTCs) and genomic material, including cell-free DNA (cfDNA), as a complementary biopsy to the solid tumor tissue. The solid biopsy is critical for molecular characterization and diagnosis at the time of collection. The liquid biopsy has the advantage of longitudinal molecular characterization of the disease, which is crucial for precision medicine and patient-oriented treatment. In this review, we provide an overview of CRC and the different methodologies for the detection of CTCs and cfDNA, followed by a discussion on the potential clinical utility of the liquid biopsy in CRC patient care, and lastly, current challenges in the field.

2020 ◽  
Vol 38 (15_suppl) ◽  
pp. e18521-e18521
Author(s):  
Santiago Cabezas-Camarero ◽  
Vanesa García-Barberán ◽  
Virginia De la Orden-García ◽  
Beatriz Mediero-Valeros ◽  
Isabel Díaz-Millán ◽  
...  

e18521 Background: The role of liquid biopsy in diagnosis and therapy monitoring in patients with head and neck cancer has been much less studied compared to other cancers. Our aim was to evaluate the perfomance in the isolation and recovery for molecular characterization of circulating tumour cells (CTC) of a new immunoafinity-based method and to compare it with the molecular diagnostic yield of plasma cell-free DNA. Methods: Patients with recurrent/metastatic (RM) head and neck cancer (HNC) were enrolled prospectively. Forty mililiters (ml) of plasma were collected at one or several time-points. First blood draw was always collected before starting a new therapeutic intervention or at the time of radiologic progression. For CTC detection and isolation, either anti-EpCAM or both anti-EpCAM + anti-EGFR antibodies were used. Digital PCR and castPCR were used to study KRAS and PI3KCA mutations in non-squamous HNC. A 15-gene customized NGS panel was used to characterized both CTC and cfDNA in patients with squamous HNC. Results: Between February 2016 and October 2018, 14 patients with R/M HNC were included (n = 1 local-only disease, n = 10 local and distant disease, n = 3 distant-only disease). Squamous histology (S): n = 9. Non-squamous (NS): n = 5 (1 naso-ethmoidal intestinal-type adenocarcinoma, 1 parotid gland exadenoma pleomorfic carcinoma, 2 parotid-gland salivary duct carcinomas (SDC), 1 parotid-gland high-grade neuroendocrine carcinoma). Twenty-five CTC determinations were performed. In 5 patients serial CTC determinations were performed. Median CTC was 4 (min-max: 0-49). Median CTC among 11 CTC determinations in S-HNC was 4 (min-max: 0-49). Median CTC was 3 CTC (min-max: 0-26) among the 14 determinations performed in NS-HNC. Digital PCR unveiled mutations in CTC and in cfDNA in 2 of 4 patients tested with NS histology (KRAS, PIK3CA), with one of them being concordant for the specific mutation. NGS unveiled mutations in CTC in 7/9 patients and in cfDNA in 6/9 patients, with only one loci-concordant case between CTC and plasma. Conclusions: IsoFlux detected CTC in the majority of patients with R/M HNC, regardless of the histologic type, and allowed for molecular characterization of CTC using different techniques for mutational analysis. Both NGS and digital PCR allowed for the detection in cell-free DNA of commonly mutated genes in HNC. Liquid biopsy should be more actively studied in this disease in order to better define its role in diagnosis and therapeutic monitoring.


2018 ◽  
Vol 2018 ◽  
pp. 1-4 ◽  
Author(s):  
Chiara Nicolazzo ◽  
Luciano Colangelo ◽  
Alessandro Corsi ◽  
Guido Carpino ◽  
Angela Gradilone ◽  
...  

Hemangiopericytoma (HPT) is a rare mesenchymal tumor of fibroblastic type and for its rarity is poorly studied. The most common sites of metastatic disease in patients with intracranial HPT are the bone, liver, and lung, suggestive for an hematogenous dissemination; for this reason, we investigated, for the first time, the presence of circulating tumor cells (CTCs) in hemangiopericytoma patient by CellSearch® and SceenCell® devices. Peripheral blood samples were drawn and processed by CellSearch, an EpCAM-dependent device, and ScreenCell®, a device size based. We found nontypical CTCs by CellSearch system and the immunofluorescence analysis performed on CTCs isolate by ScreenCell demonstrated the presence of single CTCs and CTC clusters. The molecular characterization of single CTCs and CTC clusters, using antibodies directed against EpCAM, CD34, cytokeratins (8, 18, and 19), and CD45, showed a great heterogeneity in CTC clusters. We believe that the present study may open a new scenario in the rare tumors: the introduction of the liquid biopsy and the molecular characterization of circulating tumor cells could lead to personalized targeted treatments and also for rare tumors.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 2953-2953
Author(s):  
Nieves Garcia-Gisbert ◽  
Lierni Fernández-Ibarrondo ◽  
Concepción Fernández-Rodríguez ◽  
Laura Camacho ◽  
Anna Angona ◽  
...  

Introduction. Genetic studies in patients with Ph-negative myeloproliferative neoplasms (MPNs) are essential to establish a correct diagnosis and to optimize their management. Recently, it has been demonstrated that it is possible to detect molecular alterations present in solid tumors and hematologic neoplasms by the analysis of circulating tumor DNA in plasma samples, which is known as liquid biopsy. It has been reported that most of the circulating cell-free DNA (cfDNA) has its origin in immature hematopoietic and bone marrow cells; however, there is limited information about liquid biopsy applications in MPNs. Objective. To analyze the molecular profile of circulating tumor DNA in patients with MPNs. Patients and methods. Peripheral blood samples from 75 patients with MPNs were collected at the time of diagnosis: 21 polycythemia vera (PV), 42 essential thrombocythemia (ET), 10 primary myelofibrosis (PMF) and two non-classifiable MPNs. Cellular DNA was extracted from the granulocytic fraction isolated by density gradient centrifugation and cfDNA was obtained from 1-3ml of plasma (MagMAX Cell-Free DNA Isolation Kit, Thermo Fisher Scientific). cfDNA purity was ascertained by capillary electrophoresis (4200 TapeStation system, Agilent). Molecular characterization was performed in paired samples of granulocytes DNA and cfDNA by next generation sequencing (NGS). Libraries were prepared using a custom panel that covered the whole codifying region of 25 myeloid-associated genes (QIAseq Custom DNA Panels, Qiagen) and sequenced using Illumina technology (Miseq, Nextseq) with a 3000x minimum coverage. Results. The amount of total cfDNA/mL in plasma was significantly higher in PMF (mean 97 ng/ml) than in PV and ET (mean 18 and 23g/ml, respectively) (p = 0.003, Kruskal-Wallis). Overall, 144 mutations in driver (JAK2, CALR, MPL) and non-driver genes were detected in the granulocytic fraction with similar frequencies to what has been described for PV, ET and PMF. The most frequently mutated non-driver genes where ASXL1 (18.7%), TET2 (17.3%), DNMT3A (6.7%), SRSF2 (6.7%) and IDH2 (5.3%). Sequencing of cfDNA showed a total of 146 mutations. All mutations detected in the granulocytic fraction were also detected in the paired cfDNA sample (100% concordance); two additional mutations in MPL and ASXL1 were detected in plasma in one case. The median variant allele frequency (VAF) present in cfDNA was 29% (range 0.86 - 91.73%), which is far superior to what has been described in solid neoplasms or lymphomas (median 0.41%, range 0.03% - 97.6%). A strong correlation was observed between the VAFs of granulocytic DNA and cfDNA (r = 0.875, p < 0.001, Spearman) (Figure 1). The mutation VAFs detected in cfDNA were significantly higher than VAFs detected in granulocytes (p < 0.001, Wilcoxon). In particular, MPL mutations presented 2.5 higher VAF in cfDNA than in granulocytes (p = 0.018, Wilcoxon). This finding was confirmed and quantified by digital PCR. Interestingly, in one PMF patient the p.W515L MPL driver mutation was originally only detectable by NGS in cfDNA, but not in granulocytes. This mutation was identified by ultra-sensitive digital PCR in both cfDNA (VAF 2.30%) and granulocytes (VAF 0.16%). Conclusions. The analysis of circulating tumor DNA allows the characterization of the molecular abnormalities of patients with Ph negative myeloproliferative neoplasms. The sensitivity for mutation detection in driver and non-driver genes was equal or even superior to that obtained when studying the isolated granulocytic population. Disclosures Salar: Roche: Research Funding, Speakers Bureau; Janssen Pharmaceuticals: Consultancy, Speakers Bureau; Gilead: Consultancy, Speakers Bureau; Celgene: Consultancy. Besses:Gilead: Research Funding. Bellosillo:TermoFisher Scientific: Consultancy, Speakers Bureau; Qiagen: Consultancy, Speakers Bureau.


2006 ◽  
Vol 175 (4S) ◽  
pp. 467-467
Author(s):  
Victor K. Lin ◽  
Shih-Ya Wang ◽  
Claus G. Roehrbom

Sign in / Sign up

Export Citation Format

Share Document