scholarly journals Targeting Chronic Myeloid Leukemia Stem/Progenitor Cells Using Venetoclax-Loaded Immunoliposome

Cancers ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 1311
Author(s):  
Mohammad Houshmand ◽  
Francesca Garello ◽  
Rachele Stefania ◽  
Valentina Gaidano ◽  
Alessandro Cignetti ◽  
...  

CML is a hematopoietic stem-cell disorder emanating from breakpoint cluster region/Abelson murine leukemia 1 (BCR/ABL) translocation. Introduction of different TKIs revolutionized treatment outcome in CML patients, but CML LSCs seem insensitive to TKIs and are detectable in newly diagnosed and resistant CML patients and in patients who discontinued therapy. It has been reported that CML LSCs aberrantly express some CD markers such as CD26 that can be used for the diagnosis and for targeting. In this study, we confirmed the presence of CD26+ CML LSCs in newly diagnosed and resistant CML patients. To selectively target CML LSCs/progenitor cells that express CD26 and to spare normal HSCs/progenitor cells, we designed a venetoclax-loaded immunoliposome (IL-VX). Our results showed that by using this system we could selectively target CD26+ cells while sparing CD26− cells. The efficiency of venetoclax in targeting CML LSCs has been reported and our system demonstrated a higher potency in cell death induction in comparison to free venetoclax. Meanwhile, treatment of patient samples with IL-VX significantly reduced CD26+ cells in both stem cells and progenitor cells population. In conclusion, this approach showed that selective elimination of CD26+ CML LSCs/progenitor cells can be obtained in vitro, which might allow in vivo reduction of side effects and attainment of treatment-free, long-lasting remission in CML patients.

Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 2544-2544
Author(s):  
Naoki Hosen ◽  
Emmanuelle Passegue ◽  
Irving L. Weissman

Abstract For most leukemia the target cells of transforming mutations are still unknown. Here, we studied the developmental origin of t(8;21)-acute myeloid leukemia (AML), t(15;17)-acute promyelocytic leukemia (APL), and t(9;22)-chronic myeloid leukemia (CML). Purified mouse hematopoietic stem cells (HSCs) and various committed myeloid progenitor cells were retrovirally transduced with AML1/ETO, PML/RARα, or p210 BCR/ABL and subjected to in-vitro serial replating assay and in-vivo transplantation. Myeloid progenitors were efficiently immortalized in-vitro by AML1/ETO or PML/RARα as assayed in serial replating assays. However, following transplantation into lethally irradiated mice, neither AML1/ETO- nor PML/RARα-transduced myeloid progenitors were expanded in-vivo, although cells carrying the fusion gene DNA persisted well beyond their non-transduced control progenitors. In addition, 10 months after the transplant with transduced myeloid progenitor cells, PML/RARα but not AML1/ETO mRNA expression was still detected in committed myeloid progenitors, although PML/RARα-expressing cells were still not expanded. This finding demonstrates the ability of PML/RARα to increase the lifespan of committed myeloid progenitor cells both in-vitro and in-vivo and suggest that t(15;17)-APL could possibly evolve from persisting progenitor-derived cells. In contrast, BCR/ABL-expressing myeloid progenitors disappeared within 3 months post transplantation. Analysis of mice transplanted with transduced-HSCs demonstrated that AML1/ETO induced the accumulation of the most immature subset of HSCs (Lin-/c-kit+/Sca-1+/Flk-2-), while in contrast PML/RARα induced HSCs disappearance in most (5 out of 6) cases. In addition, we demonstrate that p210 BCR/ABL could induce the development of a CML-like disease from transduced HSCs (6 out of 16 cases), which is compatible with previous report. Together, these results suggest the existence of novel pre-leukemic stem cells (pre-LSCs) entities. Slowly expanding pre-LSCs could be generated from HSCs transformed by the expression of AML1/ETO. Persisting pre-LSCs could be generated from myeloid progenitors transformed by the expression of PML/RARα. These pre-LSC populations could mediate the early phases of t(8;21)-AML and t(15;17)-APL pathogenesis and could represent novel key targets for anti-leukemia therapies.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 32-32
Author(s):  
Gordon G. L. Wong ◽  
Gabriela Krivdova ◽  
Olga I. Gan ◽  
Jessica L. McLeod ◽  
John E. Dick ◽  
...  

Micro RNA (miRNA)-mediated gene silencing, largely mediated by the Argonaute (AGO) family proteins, is a post-transcriptional gene expression control mechanism that has been shown to regulate hematopoietic stem and progenitor cells (HSPCs) quiescence, self-renewal, proliferation, and differentiation. Interestingly, only the function of AGO2 in hematopoiesis has been investigated. O'Carroll et al. (2007) showed that AGO2 knockout in mice bone marrow cells interferes with B220low CD43- IgM-pre-B cells and peripheral B cell differentiation and impairs Ter119high, CD71high erythroid precursors maturation. However, the functional significance of other AGO proteins in the regulation of stemness and lineage commitment remains unclear. AGO submembers, AGO1-4 in humans, are traditionally believed to act redundantly in their function. However, our previous proteomic analysis from sorted populations of the human hematopoietic hierarchy shows each sub-member is differentially expressed during HSPCs development, suggesting each sub-member may have a specialized function in hematopoiesis. Here, we conducted CRISPR-Cas9 mediated knockout of AGO1-4 in human cord blood derived long-term (LT-) and short-term hematopoietic stem cells (ST-HSCs) and investigated the impact of the loss of function of individual AGOs in vitro and in vivo in xenograft assays. From the in vitro experiment, we cultured CRISPR-edited LT- or ST-HSCs in a single cell manner on 96-well plates pre-cultured with murine MS5 stroma cells in erythro-myeloid differentiation condition. The colony-forming capacity and lineage commitment of each individual HSC is assessed on day 17 of the culture. Initial data showed that AGO1, AGO2 and AGO3 knockout decreased the colony formation efficacy of both LT- and ST-HSCs, suggesting AGO1, AGO2 and AGO3 are involved in LT- and ST-HSCs proliferation or survival. As for lineage output, AGO1 knockout increases CD56+ natural killer cell commitment in LT-HSCs and erythroid differentiation in ST-HSCs; AGO2 knockout increases erythroid differentiation in both LT- and ST-HSCs and decreases myeloid differentiation in ST-HSCs; while AGO4 knockout seems to decrease erythroid output. For the in vivo experiment, we xenotransplanted AGO1 and AGO2 knockout LT-HSCs in irradiated immunodeficient NSG mice and assessed the change in LT-HSCs engraftment level and lineage differentiation profile at 12- and 24-week time points. We found that AGO2 knockout increased CD45+ engraftment at both 12- and 24-weeks. Aligning with our in vitro data, AGO2 knockout increases GlyA+ erythroid cells at 12- and 24-weeks. The increase in GlyA+ erythroid cells is a consequence of the 2-fold increase in GlyA+ CD71+ erythroid precursor cells, recapitulating previous findings that AGO2 knockout in mice impairs CD71high erythroid precursor maturation leading to the accumulation of undifferentiated CD71+ erythroid precursors (O'Carroll et al., 2007). Accumulation of early progenitors of the erythroid lineage, including the common myeloid progenitors (CMPs) and myelo-erythroid progenitor (MEPs) were observed, as well as their progeny including CD33+ myeloid and CD41+ megakaryocytes. For the myeloid lineage, AGO2 knockout shifts myeloid differentiation toward CD66b+ granulocytes from CD14+ monocytes. For lymphoid, AGO2 knockout decreases CD19+ CD10- CD20+ mature B-lymphoid cells, which again aligns with previous AGO2 knockout mice results. On the other hand, AGO1 knockout LT-HSCs share some similar phenotype with AGO2 knockout LT-HSCs, where AGO1 knockout increases CD71+ erythroid precursors. However, AGO1 knockout in LT-HSCs also results in unique phenotypes, with a decrease in neutrophil formation and an increase in CD4+ CD8+ T progenitor cells are observed. AGO3 and AGO4 knockout experiments are in progress. In summary, our AGO2 knockout experiments recapitulate the reported results from murine studies but also illustrate a more complete role of AGO2 in hematopoietic lineage differentiation. Moreover, AGO knockout experiments of individual submembers are revealing novel insights into their role in the regulation of stemness and lineage commitment of LT-HSCs and ST-HSCs. These data point to a unique role of different AGO isoforms in lineage commitment in human HSCs and argue against redundant functioning. Disclosures Dick: Bristol-Myers Squibb/Celgene: Research Funding.


Blood ◽  
2011 ◽  
Vol 117 (18) ◽  
pp. 4773-4777 ◽  
Author(s):  
Hal E. Broxmeyer ◽  
Man-Ryul Lee ◽  
Giao Hangoc ◽  
Scott Cooper ◽  
Nutan Prasain ◽  
...  

Abstract Cryopreservation of hematopoietic stem cells (HSCs) and hematopoietic progenitor cells (HPCs) is crucial for cord blood (CB) banking and transplantation. We evaluated recovery of functional HPC cryopreserved as mononuclear or unseparated cells for up to 23.5 years compared with prefreeze values of the same CB units. Highly efficient recovery (80%-100%) was apparent for granulocyte-macrophage and multipotential hematopoietic progenitors, although some collections had reproducible low recovery. Proliferative potential, response to multiple cytokines, and replating of HPC colonies was extensive. CD34+ cells isolated from CB cryopreserved for up to 21 years had long-term (≥ 6 month) engrafting capability in primary and secondary immunodeficient mice reflecting recovery of long-term repopulating, self-renewing HSCs. We recovered functionally responsive CD4+ and CD8+ T lymphocytes, generated induced pluripotent stem (iPS) cells with differentiation representing all 3 germ cell lineages in vitro and in vivo, and detected high proliferative endothelial colony forming cells, results of relevance to CB biology and banking.


2016 ◽  
Vol 214 (2) ◽  
pp. 359-380 ◽  
Author(s):  
Carsten Riether ◽  
Christian M. Schürch ◽  
Elias D. Bührer ◽  
Magdalena Hinterbrandner ◽  
Anne-Laure Huguenin ◽  
...  

Aberrant proliferation, symmetric self-renewal, increased survival, and defective differentiation of malignant blasts are key oncogenic drivers in acute myeloid leukemia (AML). Stem cell gene signatures predict poor prognosis in AML patients; however, with few exceptions, these deregulated molecular pathways cannot be targeted therapeutically. In this study, we demonstrate that the TNF superfamily ligand–receptor pair CD70/CD27 is expressed on AML blasts and AML stem/progenitor cells. CD70/CD27 signaling in AML cells activates stem cell gene expression programs, including the Wnt pathway, and promotes symmetric cell divisions and proliferation. Soluble CD27, reflecting the extent of CD70/CD27 interactions in vivo, was significantly elevated in the sera of newly diagnosed AML patients and is a strong independent negative prognostic biomarker for overall survival. Blocking the CD70/CD27 interaction by mAb induced asymmetric cell divisions and differentiation in AML blasts and AML stem/progenitor cells, inhibited cell growth and colony formation, and significantly prolonged survival in murine AML xenografts. Importantly, hematopoietic stem/progenitor cells from healthy BM donors express neither CD70 nor CD27 and were unaffected by blocking mAb treatment. Therefore, targeting CD70/CD27 signaling represents a promising therapeutic strategy for AML.


Leukemia ◽  
2021 ◽  
Author(s):  
Madeline Niederkorn ◽  
Chiharu Ishikawa ◽  
Kathleen M. Hueneman ◽  
James Bartram ◽  
Emily Stepanchick ◽  
...  

AbstractUbiquitin-specific peptidase 15 (USP15) is a deubiquitinating enzyme implicated in critical cellular and oncogenic processes. We report that USP15 mRNA and protein are overexpressed in human acute myeloid leukemia (AML) as compared to normal hematopoietic progenitor cells. This high expression of USP15 in AML correlates with KEAP1 protein and suppression of NRF2. Knockdown or deletion of USP15 in human and mouse AML models significantly impairs leukemic progenitor function and viability and de-represses an antioxidant response through the KEAP1-NRF2 axis. Inhibition of USP15 and subsequent activation of NRF2 leads to redox perturbations in AML cells, coincident with impaired leukemic cell function. In contrast, USP15 is dispensable for human and mouse normal hematopoietic cells in vitro and in vivo. A preclinical small-molecule inhibitor of USP15 induced the KEAP1-NRF2 axis and impaired AML cell function, suggesting that targeting USP15 catalytic function can suppress AML. Based on these findings, we report that USP15 drives AML cell function, in part, by suppressing a critical oxidative stress sensor mechanism and permitting an aberrant redox state. Furthermore, we postulate that inhibition of USP15 activity with small molecule inhibitors will selectively impair leukemic progenitor cells by re-engaging homeostatic redox responses while sparing normal hematopoiesis.


Blood ◽  
2000 ◽  
Vol 95 (7) ◽  
pp. 2198-2203 ◽  
Author(s):  
Liquan Gao ◽  
Ilaria Bellantuono ◽  
Annika Elsässer ◽  
Stephen B. Marley ◽  
Myrtle Y. Gordon ◽  
...  

Abstract Hematologic malignancies such as acute and chronic myeloid leukemia are characterized by the malignant transformation of immature CD34+ progenitor cells. Transformation is associated with elevated expression of the Wilm's tumor gene encoded transcription factor (WT1). Here we demonstrate that WT1 can serve as a target for cytotoxic T lymphocytes (CTL) with exquisite specificity for leukemic progenitor cells. HLA-A0201– restricted CTL specific for WT1 kill leukemia cell lines and inhibit colony formation by transformed CD34+ progenitor cells isolated from patients with chronic myeloid leukemia (CML), whereas colony formation by normal CD34+ progenitor cells is unaffected. Thus, the tissue-specific transcription factor WT1 is an ideal target for CTL-mediated purging of leukemic progenitor cells in vitro and for antigen-specific therapy of leukemia and other WT1-expressing malignancies in vivo.


Blood ◽  
2003 ◽  
Vol 101 (12) ◽  
pp. 4680-4686 ◽  
Author(s):  
Kent W. Christopherson ◽  
Scott Cooper ◽  
Hal E. Broxmeyer

AbstractCXC ligand 12 (CXCL12; also known as stromal cell–derived factor 1α/SDF-1α) chemoattracts hematopoietic stem and progenitor cells (HSCs/HPCs) and is thought to play a crucial role in the mobilization of HSCs/HPCs from the bone marrow. CD26 (dipeptidylpeptidase IV [DPPIV]) is a membrane-bound extracellular peptidase that cleaves dipeptides from the N-terminus of polypeptide chains. CD26 has the ability to cleave CXCL12 at its position-2 proline. We found by flow cytometry that CD26 is expressed on a subpopulation of normal Sca-1+c-kit+lin— hematopoietic cells isolated from mouse bone marrow, as well as Sca-1+c-kit—lin— cells, and that these cells possess CD26 peptidase activity. To test the functional role of CD26 in CXCL12-mediated normal HSC/HPC migration, chemotaxis assays were performed. The CD26 truncated CXCL12(3-68) showed an inability to induce the migration of sorted Sca-1+c-kit+lin— or Sca-1+c-kit—lin— mouse marrow cells compared with the normal CXCL12. In addition, CXCL12(3-68) acts as an antagonist, resulting in the reduction of migratory response to normal CXCL12. Treatment of Sca-1+c-kit+lin— mouse marrow cells, and myeloid progenitors within this population, or Sca-1+c-kit—lin— cells with a specific CD26 inhibitor, enhanced the migratory response of these cells to CXCL12. Finally, to test for potential in vivo relevance of these in vitro observations, mice were treated with CD26 inhibitors during granulocyte colony-stimulating factor (G-CSF)–induced mobilization. This treatment resulted in a reduction in the number of progenitor cells in the periphery as compared with the G-CSF regimen alone. This suggests that a mechanism of action of G-CSF mobilization involves CD26.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 1293-1293
Author(s):  
Hong Qian ◽  
Sten Eirik W. Jacobsen ◽  
Marja Ekblom

Abstract Within the bone marrow environment, adhesive interactions between stromal cells and extracellular matrix molecules are required for stem and progenitor cell survival, proliferation and differentiation as well as their transmigration between bone marrow (BM) and the circulation. This regulation is mediated by cell surface adhesion receptors. In experimental mouse stem cell transplantation models, several classes of cell adhesion receptors have been shown to be involved in the homing and engraftment of stem and progenitor cells in BM. We have previously found that integrin a6 mediates human hematopoietic stem and progenitor cell adhesion to and migration on its specific ligands, laminin-8 and laminin-10/11 in vitro (Gu et al, Blood, 2003; 101:877). Using FACS analysis, the integrin a6 chain was now found to be ubiquitously (>95%) expressed in mouse hematopoietic stem and progenitor cells (lin−Sca-1+c-Kit+, lin−Sca-1+c-Kit+CD34+) both in adult bone marrow and in fetal liver. In vitro, about 70% of mouse BM lin−Sca-1+c-Kit+ cells adhered to laminin-10/11 and 40% adhered to laminin-8. This adhesion was mediated by integrin a6b1 receptor, as shown by functional blocking monoclonal antibodies. We also used a functional blocking monoclonal antibody (GoH3) against integrin a6 to analyse the role of the integrin a6 receptor for the in vivo homing of hematopoietic stem and progenitor cells. We found that the integrin a6 antibody inhibited the homing of bone marrow progenitors (CFU-C) into BM of lethally irradiated recipients. The number of homed CFU-C was reduced by about 40% as compared to cells incubated with an isotype matched control antibody. To study homing of long-term repopulating stem cells (LTR), antibody treated bone marrow cells were first injected intravenously into lethally irradiated primary recipients. After three hours, bone marrow cells of the primary recipients were analysed by competitive repopulation assay in secondary recipients. Blood analysis 16 weeks after transplantation revealed an 80% reduction of stem cell activity of integrin a6 antibody treated cells as compared to cells treated with control antibody. These results suggest that integrin a6 plays an important role for hematopoietic stem and progenitor cell homing in vivo.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 2674-2674
Author(s):  
Seiji Fukuda ◽  
Hal E. Broxmeyer ◽  
Louis M. Pelus

Abstract The Flt3 receptor tyrosine kinase (Flt3) is expressed on primitive normal and transformed hematopoietic cells and Flt3 ligand (FL) facilitates hematopoietic stem cell mobilization in vivo. The CXC chemokine SDF-1α(CXCL12) attracts primitive hematopoietic cells to the bone marrow microenvironment while disruption of interaction between SDF-1α and its receptor CXCR4 within bone marrow may facilitate their mobilization to the peripheral circulation. We have previously shown that Flt3 ligand has chemokinetic activity and synergistically increases migration of CD34+ cells and Ba/F3-Flt3 cells to SDF-1α in short-term migration assays; this was associated with synergistic phosphorylation of MAPKp42/p44, CREB and Akt. Consistent with these findings, over-expression of constitutively active ITD (internal tandem duplication) Flt3 found in patients with AML dramatically increased migration to SDF-1α in Ba/F3 cells. Since FL can induce mobilization of hematopoietic stem cells, we examined if FL could antagonize SDF-1α/CXCR4 function and evaluated the effect of FL on in vivo homing of normal hematopoietic progenitor cells. FL synergistically increased migration of human RS4;11 acute leukemia cells, which co-express wild-type Flt3 and CXCR4, to SDF-1α in short term migration assay. Exogenous FL had no effect on SDF-1α induced migration of MV4-11 cells that express ITD-Flt3 and CXCR4 however migration to SDF-1α was partially blocked by treatment with the tyrosine kinase inhibitor AG1296, which inhibits Flt3 kinase activity. These results suggest that FL/Flt3 signaling positively regulates SDF-1α mediated chemotaxis of human acute leukemia cells in short-term assays in vitro, similar to that seen with normal CD34+ cells. In contrast to the enhancing effect of FL on SDF-1α, prolonged incubation of RS4;11 and THP-1 acute myeloid leukemia cells, which also express Flt3 and CXCR4, with FL for 48hr, significantly inhibited migration to SDF-1α, coincident with reduction of cell surface CXCR4. Similarly, prolonged exposure of CD34+ or Ba/F3-Flt3 cells to FL down-regulates CXCR4 expression, inhibits SDF-1α-mediated phosphorylation of MAPKp42/p44, CREB and Akt and impairs migration to SDF-1α. Despite reduction of surface CXCR4, CXCR4 mRNA and intracellular CXCR4 in Ba/F3-Flt3 cells were equivalent in cells incubated with or without FL, determined by RT-PCR and flow cytometry after cell permeabilization, suggesting that the reduction of cell surface CXCR4 expression is due to accelerated internalization of CXCR4. Furthermore, incubation of Ba/F3-Flt3 cells with FL for 48hr or over-expression of ITD-Flt3 in Ba/F3 cells significantly reduced adhesion to VCAM1. Consistent with the negative effect of FL on in vitro migration and adhesion to VCAM1, pretreatment of mouse bone marrow cells with 100ng/ml of FL decreased in vivo homing of CFU-GM to recipient marrow by 36±7% (P<0.01), indicating that FL can negatively regulate in vivo homing of hematopoietic progenitor cells. These findings indicate that short term effect of FL can provide stimulatory signals whereas prolonged exposure has negative effects on SDF-1α/CXCR4-mediated signaling and migration and suggest that the FL/Flt3 axis regulates hematopoietic cell trafficking in vivo. Manipulation of SDF-1α/CXCR4 and FL/Flt3 interaction could be clinically useful for hematopoietic cell transplantation and for treatment of hematopoietic malignancies in which both Flt3 and CXCR4 are expressed.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 1387-1387
Author(s):  
Hong Qian ◽  
Sten Eirik W. Jacobsen ◽  
Marja Ekblom

Abstract Homing of transplanted hematopoietic stem cells (HSC) in the bone marrow (BM) is a prerequisite for establishment of hematopoiesis following transplantation. However, although multiple adhesive interactions of HSCs with BM microenviroment are thought to critically influence their homing and subsequently their engraftment, the molecular pathways that control the homing of transplanted HSCs, in particular, of fetal HSCs are still not well understood. In experimental mouse stem cell transplantation models, several integrins have been shown to be involved in the homing and engraftment of both adult and fetal stem and progenitor cells in BM. We have previously found that integrin a6 mediates human hematopoietic stem and progenitor cell adhesion to and migration on its specific ligands, laminin-8 and laminin-10/11 in vitro (Gu et al, Blood, 2003; 101:877). Furthermore, integrin a6 is required for adult mouse HSC homing to BM in vivo (Qian et al., Abstract American Society of Hematology, Blood 2004 ). We have now found that the integrin a6 chain like in adult HSC is ubiquitously (>99%) expressed also in fetal liver hematopoietic stem and progenitor cells (lin−Sca-1+c-Kit+, LSK ). In vitro, fetal liver LSK cells adhere to laminin-10/11 and laminin-8 in an integrin a6b1 receptor-dependent manner, as shown by function blocking monoclonal antibodies. We have now used a function blocking monoclonal antibody (GoH3) against integrin a6 to analyse the role of the integrin a6 receptor for the in vivo homing of fetal liver hematopoietic stem and progenitor cells to BM. The integrin a6 antibody inhibited homing of fetal liver progenitors (CFU-C) into BM of lethally irradiated recipients. The number of homed CFU-C in BM was reduced by about 40% as compared to the cells incubated with an isotype matched control antibody. To study homing of long-term repopulating stem cells, BM cells were first incubated with anti-integrin alpha 6 or anti-integrin alpha 4 or control antibody, and then injected intravenously into lethally irradiated primary recipients. After three hours, BM cells of the primary recipients were analysed by competitive repopulation assay in secondary recipients. Blood analysis up to 16 weeks after transplantation showed that no reduction of stem cell reconstitution from integrin a6 antibody treated cells as compared to cells treated with control antibody. In accordance with this, fetal liver HSC from integrin a6 gene deleted embryos did not show any impairment of homing and engraftment in BM as compared to normal littermates. These results suggest that integrin a6 plays an important developmentally regulated role for homing of distinct hematopoietic stem and progenitor cell populations in vivo.


Sign in / Sign up

Export Citation Format

Share Document