scholarly journals Substance P Antagonism as a Novel Therapeutic Option to Enhance Efficacy of Cisplatin in Triple Negative Breast Cancer and Protect PC12 Cells against Cisplatin-Induced Oxidative Stress and Apoptosis

Cancers ◽  
2021 ◽  
Vol 13 (15) ◽  
pp. 3871
Author(s):  
Emma Rodriguez ◽  
Guangsheng Pei ◽  
Sang T. Kim ◽  
Alexis German ◽  
Prema Robinson

Although cisplatin is very effective as a treatment strategy in triple-negative breast cancer (TNBC), it has unwarranted outcomes owing to recurrence, chemoresistance and neurotoxicity. There is critically important to find new, effective and safe therapeutics for TNBC. We determined if SP-receptor antagonism in combination with cisplatin may serve as a novel, more efficacious and safer therapeutic option than existing therapies for TNBC. We used a neuronal cell line (PC12) and two TNBC cell lines (Sum 185 and Sum 159) for these studies. We determined that the levels of cells expressing the high-affinity SP-receptor (neurokinin 1 receptor (NK1R)), as determined by flow-cytometry was significantly elevated in response to cisplatin in all three cells. We determined that treatment with aprepitant, an SP-receptor antagonist decreased cisplatin-induced, loss of viability (studied by MTT assay), production of reactive oxygen species (by DCFDA assay) and apoptosis (by flow-cytometry) in PC12 cells while it was increased in the two TNBC cells. Furthermore, we demonstrated that important genes associated with metastases, inflammation, chemoresistance and cell cycle progression are attenuated by SP-receptor antagonism in the TNBC cell line, Sum 185. These studies implicate that SP-receptor antagonism in combination with cisplatin may possibly serve as a novel, more efficacious and safer therapeutic option than existing therapies for TNBC.

2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Qing He ◽  
Hongyu Jing ◽  
Lucy Liaw ◽  
Lindsey Gower ◽  
Calvin Vary ◽  
...  

Abstract Sprouty (Spry) proteins have been implicated in cancer progression, but their role in triple-negative breast cancer (TNBC), a subtype of lethal and aggressive breast cancer, is unknown. Here, we reported that Spry1 is significantly expressed in TNBC specimen and MDA-MB-231 cells. To understand Spry1 regulation of signaling events controlling breast cancer phenotype, we used lentiviral delivery of human Spry1 shRNAs to suppress Spry1 expression in MDA-MB-231, an established TNBC cell line. Spry1 knockdown MDA-MB-231 cells displayed an epithelial phenotype with increased membrane E-cadherin expression. Knockdown of Spry1 impaired MDA-MB-231 cell migration, Matrigel invasion, and anchorage-dependent and -independent growth. Tumor xenografts originating from Spry1 knockdown MDA-MB-231 cells grew slower, had increased E-cadherin expression, and yielded fewer lung metastases compared to control. Furthermore, suppressing Spry1 in MDA-MB-231 cells impaired the induction of Snail and Slug expression by EGF, and this effect was associated with increased EGFR degradation and decreased EGFR/Grb2/Shp2/Gab1 signaling complex formation. The same phenotype was also observed in the TNBC cell line MDA-MB-157. Together, our results show that unlike in some tumors, where Spry may mediate tumor suppression, Spry1 plays a selective role in at least a subset of TNBC to promote the malignant phenotype via enhancing EGF-mediated mesenchymal phenotype.


Cancers ◽  
2021 ◽  
Vol 13 (20) ◽  
pp. 5178
Author(s):  
Emma Rodriguez ◽  
Guangsheng Pei ◽  
Zhongming Zhao ◽  
Sang T. Kim ◽  
Alexis German ◽  
...  

One contributor’s name was missing in the original version of the authorship of the paper [...]


2017 ◽  
Vol 26 (1) ◽  
pp. 14-8 ◽  
Author(s):  
Bantari W.K. Wardhani ◽  
Meidi U. Puteri ◽  
Yukihide Watanabe ◽  
Melva Louisa ◽  
Rianto Setiabudy ◽  
...  

Background: Clustered regularly interspaced short palindromic repeats/CRISPR-associated 9 (CRISPR/Cas9) is a powerful genome editing technique. It consists of RNA-guided DNA endonuclease Cas9 and single guide RNA (gRNA). By combining their expressions, high efficiency cleavage of the target gene can be achieved, leading to the formation of DNA double-strand break (DSB) at the genomic locus of interest which will be repaired via NHEJ (non-homologous end joining) or HDR (homology-directed repair) and mediate DNA alteration. We aimed to apply the CRISPR/Cas9 technique to knock-out the transmembrane prostate androgen-induced protein (TMEPAI) gene in the triple negative breast cancer cell line.Methods: Designed gRNA which targets the TMEPAI gene was synthesized, annealed, and cloned into gRNA expression vector. It was co-transfected into the TNBC cell line using polyethylenimine (PEI) together with Cas9-GFP and puromycin resistant gene vector. At 24-hours post-transfection, cells were selected by puromycin for 3 days before they were cloned. Selected knock-out clones were subsequently checked on their protein levels by western blotting.Results: CRISPR/Cas9, a genome engineering technique successfully knocked-out TMEPAI in the Hs578T TNBC cell line. Sequencing shows a frameshift mutation in TMEPAI. Western blot shows the absence of TMEPAI band on Hs578T KO cells.Conclusion: TMEPAI gene was deleted in the TNBC cell line using the genomic editing technique CRISPR/Cas9. The deletion was confirmed by genome and protein analysis.


2021 ◽  
Vol 11 ◽  
Author(s):  
Willy Antoni Abreu de Oliveira ◽  
Stijn Moens ◽  
Youssef El Laithy ◽  
Bernard K. van der Veer ◽  
Paraskevi Athanasouli ◽  
...  

Triple-Negative Breast Cancer (TNBC) is the most aggressive breast cancer subtype, characterized by limited treatment options and higher relapse rates than hormone-receptor-positive breast cancers. Chemotherapy remains the mainstay treatment for TNBC, and platinum salts have been explored as a therapeutic alternative in neo-adjuvant and metastatic settings. However, primary and acquired resistance to chemotherapy in general and platinum-based regimens specifically strongly hampers TNBC management. In this study, we used carboplatin-resistant in vivo patient-derived xenograft and isogenic TNBC cell-line models and detected enhanced Wnt/β-catenin activity correlating with an induced expression of stem cell markers in both resistant models. In accordance, the activation of canonical Wnt signaling in parental TNBC cell lines increases stem cell markers’ expression, formation of tumorspheres and promotes carboplatin resistance. Finally, we prove that Wnt signaling inhibition resensitizes resistant models to carboplatin both in vitro and in vivo, suggesting the synergistic use of Wnt inhibitors and carboplatin as a therapeutic option in TNBC. Here we provide evidence for a prominent role of Wnt signaling in mediating resistance to carboplatin, and we establish that combinatorial targeting of Wnt signaling overcomes carboplatin resistance enhancing chemotherapeutic drug efficacy.


2021 ◽  
Author(s):  
Willy Antoni Abreu de Oliveira ◽  
Stijn Moens ◽  
Youssef El Laithy ◽  
Bernard K. van der Veer ◽  
Paraskevi Athanasouli ◽  
...  

Triple-Negative Breast Cancer (TNBC) is the most aggressive breast cancer subtype, characterized by both limited treatment options and higher relapse rates than hormone-receptor-positive breast cancers. Chemotherapy remains the mainstay treatment for TNBC, and platinum salts have been explored as a therapeutic alternative in neo-adjuvant and metastatic settings. However, primary and acquired resistance to chemotherapy in general and platinum-based regimens specifically strongly hampers TNBC management. In this study, we used carboplatin-resistant in vivo patient-derived xenograft and isogenic TNBC cell-line models and detected enhanced Wnt/β-catenin activity correlating with an induced expression of stem cell markers in both resistant models. In accordance, the activation of canonical Wnt signaling in parental TNBC cell lines increases stem cell markers' expression, formation of tumorspheres, and promotes carboplatin resistance. Finally, we prove that Wnt signaling inhibition resensitizes resistant models to carboplatin both in vitro and in vivo, suggesting the synergistic use of Wnt inhibitors and carboplatin as a therapeutic option in TNBC. Here we provide evidence for a prominent role of Wnt signaling in mediating resistance to carboplatin, and we establish that combinatorial targeting of Wnt signaling overcomes carboplatin resistance enhancing chemotherapeutic drug efficacy.


2017 ◽  
Vol 26 (3) ◽  
pp. 178-82 ◽  
Author(s):  
Bantari W.K. Wardhani ◽  
Meidi U. Puteri ◽  
Yukihide Watanabe ◽  
Melva Louisa ◽  
Rianto Setiabudy ◽  
...  

Background: Triple negative breast cancer (TNBC) tends to grow more rapidly and has poorer prognosis compared to others. High expression of transmembrane prostate androgen-induced protein (TMEPAI) correlates with poor prognosis in TNBC patients. However, the mechanistic role of TMEPAI in tumorigenic remains unknown. This study aimed to knock-out TMEPAI in TNBC cell line to determine its function further in cells proliferation.Methods: CRISPR-Cas9 has been used previously to knock-out TMEPAI in Hs857T TNBC cell line. Hs587T TNBC parental cell line (wild-type/WT) and TMEPAI knock out Hs 586T cell lines were cultured in Dulbecco’s modified eagle medium (DMEM) supplemented with 10% fetal bovine serum, 1% penicillin-streptomycin and amphotericin B. Both cell lines were seeded in 24-well plates and counted every two days, then proliferation rates were plotted. Afterwards, total RNA were isolated from the cells and Ki-67, and TGF-β mRNA expression levels as proliferation markers were determined.Results: Cell proliferation rates as displayed in growth curve plots showed that WT-TMEPAI cell line grew more rapidly than KO-TMEPAI. In accordance, mRNA expression levels of  Ki-67 and TGF-β  were significantly decreased KO-TMEPAI as compare to TMEPAI-WT.Conclusion: Knock-out of TMEPAI attenuates cell proliferation in TNBC.


Sign in / Sign up

Export Citation Format

Share Document