scholarly journals ZNF768 Expression Associates with High Proliferative Clinicopathological Features in Lung Adenocarcinoma

Cancers ◽  
2021 ◽  
Vol 13 (16) ◽  
pp. 4136
Author(s):  
Audrey Poirier ◽  
Andréanne Gagné ◽  
Philippe Laflamme ◽  
Meagan Marcoux ◽  
Michèle Orain ◽  
...  

Lung adenocarcinoma (LUAD) is the most common type of lung cancer and a leading cause of cancer-related deaths worldwide. Despite important recent advances, the prognosis for LUAD patients is still unfavourable, with a 5 year-survival rate close to 15%. Improving the characterization of lung tumors is important to develop alternative options for the diagnosis and the treatment of this disease. Zinc-finger protein 768 (ZNF768) is a transcription factor that was recently shown to promote proliferation and repress senescence downstream of growth factor signaling. Although ZNF768 protein levels were found to be elevated in LUAD compared to normal lung tissue, it is currently unknown whether ZNF768 expression associates with clinicopathological features in LUAD. Here, using tissue microarrays of clinical LUAD surgical specimens collected from 364 patients, we observed that high levels of ZNF768 is a common characteristic of LUAD. We show that ZNF768 protein levels correlate with high proliferative features in LUAD, including the mitotic score and Ki-67 expression. Supporting a role for ZNF768 in promoting proliferation, we report that ZNF768 depletion severely impairs proliferation in several lung cancer cell lines in vitro. A marked decrease in the expression of key proliferative genes was observed in cancer cell lines depleted from ZNF768. Altogether, our findings support a role for ZNF768 in promoting proliferation of LUAD.

2009 ◽  
Vol 27 (15_suppl) ◽  
pp. e22137-e22137
Author(s):  
P. P. Massion ◽  
T. V. Pedchenko ◽  
D. V. Parekh ◽  
R. Mernaugh

e22137 Background: Lung cancer is the most common cause of cancer-related deaths in the world. There is a critical need for new strategies of early lung cancer detection. The identification of tumor-associated antigens and corresponding antibodies is one approach to discovery of diagnostic biomarkers. We used a large phage-displayed recombinant antibody library and normal human lung epithelial and non-small cell lung cancer cell lines to select for and identify recombinant antibodies specific for proteins expressed, or over-expressed, in lung cancer. Methods: The antibody library was used to select for recombinant scFv antibodies reactive with proteins present, or aberrantly expressed, in non-small cell lung cancer cell lines (A549, H549, H157, H23) in comparison to normal lung cell lines (BEAS-2B, 16-HBE, KT). Soluble scFv antibodies were obtained through 2 rounds of phage antibody cross-absorption (on normal cell lines) and selection (on non-small lung cancer cell lines). Soluble scFv were assayed by a high-throughput fluorometric microvolume assay technology (FMAT) against normal and cancer lung cell line proteins. ScFv antibodies selected by FMAT were evaluated further with Western blot-based assays. Results: More than 100 scFv antibodies identified by FMAT bound preferentially to proteins in lung cancer. Of these, 46 scFv were assayed by a high throughput Western slot blot immunoassay against pooled normal lung and lung cancer cell lysates. Eight scFv were assayed in Western blot against individual lung normal and non-small lung cancer cell line lysates. Four of these demonstrated differential binding to normal and cancer cell lysates. Conclusions: In summary, we were able to detect cancer-associated antigens in lung cancer cell lines using a phage display antibody library. In combination with high-throughput fluorescent and Western blot assays, four unique scFv antibodies were selected that differentially bound to normal and lung cancer cell lysates. These scFv will be tested as candidate biomarkers of lung cancer in independent tissue and serum samples from patient with and without lung cancer to determine utility for use in lung cancer diagnosis. No significant financial relationships to disclose.


2017 ◽  
Vol 95 (3) ◽  
pp. 428-436 ◽  
Author(s):  
Alexandra Giatromanolaki ◽  
Maria Liousia ◽  
Stella Arelaki ◽  
Dimitra Kalamida ◽  
Stamatia Pouliliou ◽  
...  

This study examined the metabolic response of lung cancer cells and normal lung fibroblasts to hypoxia and acidity. GLUT1 and HXKII mRNA/protein expression was up-regulated under hypoxia in the MRC5 fibroblasts and in the A549 and H1299 lung cancer cell lines, indicating intensified glucose absorption and glycolysis. Under hypoxia, the LDHA mRNA and LDH5 protein levels increased in the cancer cells but not in the fibroblasts. Acidity suppressed the above-mentioned hypoxia effect. PDH-kinase-1 (PDK1 mRNA and protein) and inactive phosphorylated-PDH protein levels were induced under hypoxia in the cancer cells, whereas these were reduced in the MRC5 lung fibroblasts. In human tissue sections, the prevalent expression patterns supported the contrasting metabolic behavior of cancer cells vs. tumor fibroblasts. The monocarboxylate/lactate transporter 1 (MCT1) was up-regulated in all the cell lines under hypoxic conditions, but it was suppressed under acidic conditions. The mitochondrial DNA (mtDNA) content per cell decreased significantly in the A549 cancer cell line under hypoxia, but it increased in the MRC5 fibroblasts. Taking into account these findings, we suggest that, under hypoxia, cancer cells intensify the anaerobic direction in glycolysis, while normal fibroblasts prefer to seek energy by intensifying the aerobic use of the available oxygen.


Cancers ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 247
Author(s):  
Eun-Ju Jang ◽  
Jee Young Sung ◽  
Ha-Eun Yoo ◽  
Hyonchol Jang ◽  
Jaegal Shim ◽  
...  

Anoikis is a type of apoptosis induced by cell detachment from the extracellular matrix (ECM), which removes mislocalized cells. Acquisition of anoikis resistance is critical for cancer cells to survive during circulation and, thus, metastasize at a secondary site. Although the sensitization of cancer cells to anoikis is a potential strategy to prevent metastasis, the mechanism underlying anoikis resistance is not well defined. Although family with sequence similarity 188 member B (FAM188B) is predicted as a new deubiquitinase (DUB) member, its biological function has not been fully studied. In this study, we demonstrated that FAM188B knockdown sensitized anoikis of lung cancer cell lines expressing WT-EGFR (A549 and H1299) or TKI-resistant EGFR mutant T790M/L858R (H1975). FAM188B knockdown using si-FAM188B inhibited the growth of all three human lung cancer cell lines cultured in both attachment and suspension conditions. FAM188B knockdown resulted in EGFR downregulation and thus decreased its activity. FAM188B knockdown decreased the activities of several oncogenic proteins downstream of EGFR that are involved in anoikis resistance, including pAkt, pSrc, and pSTAT3, with little changes to their protein levels. Intriguingly, si-FAM188B treatment increased EGFR mRNA levels but decreased its protein levels, which was reversed by treatment with the proteasomal inhibitor MG132, indicating that FAM188B regulates EGFR levels via the proteasomal pathway. In addition, cells transfected with si-FAM188B had decreased expression of FOXM1, an oncogenic transcription factor involved in cell growth and survival. Moreover, FAM188B downregulation reduced metastatic characteristics, such as cell adhesion, invasion, and migration, as well as growth in 3D culture conditions. Finally, tail vein injection of si-FAM188B-treated A549 cells resulted in a decrease in lung metastasis and an increase in mice survival in vivo. Taken together, these findings indicate that FAM188B plays an important role in anoikis resistance and metastatic characteristics by maintaining the levels of various oncogenic proteins and/or their activity, leading to tumor malignancy. Our study suggests FAM188B as a potential target for controlling tumor malignancy.


2000 ◽  
Vol 15 (4) ◽  
pp. 312-320 ◽  
Author(s):  
C. Botti ◽  
E. Seregni ◽  
S. Ménard ◽  
P. Collini ◽  
E. Tagliabue ◽  
...  

In this study we investigated the immunochemical and cytochemical reactivity of two monoclonal antibodies against the 16-amino acid tandem repeat of MUC4 to demonstrate a possible variation of the mucin core peptide expression related to lung cancer. The immunocytochemical anti-MUC4 reactivity was analyzed in four lung cancer cell lines (Calu-1, Calu-3, H460, SKMES) and in other tumor cell lines, as well as in frozen materials from 21 lung adenocarcinomas (ACs), including five bronchioloalveolar carcinomas (BACs), and 11 squamous cell lung carcinomas (SqCCs). A weak fluorescence anti-MUC4 positivity (range: 10.3–16.2) was observed only in acetone-fixed lung cancer cell lines Calu-1, Calu-3 and H460. These three lung cancer cell lines also showed a cytoplasmic immunoperoxidase reactivity. The immunostaining in lung cancer tissues showed a granular cytoplasmic reactivity: 15/21 (71%) and 17/21 (80%) ACs were positive with BC-LuC18.2 and BC-LuCF12, respectively. All BACs were positive. Moderate to strong reactivity was present in well-differentiated ACs. In the normal lung parenchyma counterparts weak reactivity was found only in bronchiolar cells. All SqCCs were negative. Anti-MUC4 reactivity was also observed in the alveolar mucus. In conclusion, our anti-MUC4 MAbs detect a secretion product present in mucus and this product is elaborated by lung cancer cells and overexpressed in well-differentiated lung ACs.


Cancers ◽  
2021 ◽  
Vol 13 (15) ◽  
pp. 3790
Author(s):  
Gro Elise Rødland ◽  
Sissel Hauge ◽  
Grete Hasvold ◽  
Lilli T. E. Bay ◽  
Tine T. H. Raabe ◽  
...  

Inhibitors of WEE1 and ATR kinases are considered promising for cancer treatment, either as monotherapy or in combination with chemo- or radiotherapy. Here, we addressed whether simultaneous inhibition of WEE1 and ATR might be advantageous. Effects of the WEE1 inhibitor MK1775 and ATR inhibitor VE822 were investigated in U2OS osteosarcoma cells and in four lung cancer cell lines, H460, A549, H1975, and SW900, with different sensitivities to the WEE1 inhibitor. Despite the differences in cytotoxic effects, the WEE1 inhibitor reduced the inhibitory phosphorylation of CDK, leading to increased CDK activity accompanied by ATR activation in all cell lines. However, combining ATR inhibition with WEE1 inhibition could not fully compensate for cell resistance to the WEE1 inhibitor and reduced cell viability to a variable extent. The decreased cell viability upon the combined treatment correlated with a synergistic induction of DNA damage in S-phase in U2OS cells but not in the lung cancer cells. Moreover, less synergy was found between ATR and WEE1 inhibitors upon co-treatment with radiation, suggesting that single inhibitors may be preferable together with radiotherapy. Altogether, our results support that combining WEE1 and ATR inhibitors may be beneficial for cancer treatment in some cases, but also highlight that the effects vary between cancer cell lines.


10.1038/87074 ◽  
2001 ◽  
Vol 27 (S4) ◽  
pp. 53-53
Author(s):  
Priya Dayananth ◽  
Terri McClanahan ◽  
Ferdous Gheyas ◽  
Marco Hernandez ◽  
Wei Ding ◽  
...  

Author(s):  
Angela Gradilone ◽  
Ida Silvestri ◽  
Susanna Scarpa ◽  
Stefania Morrone ◽  
Orietta Gandini ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document