scholarly journals Reversal of Bortezomib-Induced Neurotoxicity by Suvecaltamide, a Selective T-Type Ca-Channel Modulator, in Preclinical Models

Cancers ◽  
2021 ◽  
Vol 13 (19) ◽  
pp. 5013
Author(s):  
Cristina Meregalli ◽  
Yuri Maricich ◽  
Guido Cavaletti ◽  
Annalisa Canta ◽  
Valentina A. Carozzi ◽  
...  

This study evaluated suvecaltamide, a selective T-type calcium channel modulator, on chemotherapy-induced peripheral neurotoxicity (CIPN) and anti-cancer activity associated with bortezomib (BTZ). Rats received BTZ (0.2 mg/kg thrice weekly) for 4 weeks, then BTZ alone (n = 8) or BTZ+suvecaltamide (3, 10, or 30 mg/kg once daily; each n = 12) for 4 weeks. Nerve conduction velocity (NCV), mechanical threshold, β-tubulin polymerization, and intraepidermal nerve fiber (IENF) density were assessed. Proteasome inhibition was evaluated in peripheral blood mononuclear cells. Cytotoxicity was assessed in human multiple myeloma cell lines (MCLs) exposed to BTZ alone (IC50 concentration), BTZ+suvecaltamide (10, 30, 100, 300, or 1000 nM), suvecaltamide alone, or vehicle. Tumor volume was estimated in athymic nude mice bearing MCL xenografts receiving vehicle, BTZ alone (1 mg/kg twice weekly), or BTZ+suvecaltamide (30 mg/kg once daily) for 28 days, or no treatment (each n = 8). After 4 weeks, suvecaltamide 10 or 30 mg/kg reversed BTZ-induced reduction in NCV, and suvecaltamide 30 mg/kg reversed BTZ-induced reduction in IENF density. Proteasome inhibition and cytotoxicity were similar between BTZ alone and BTZ+suvecaltamide. BTZ alone and BTZ+suvecaltamide reduced tumor volume versus the control (day 18), and BTZ+suvecaltamide reduced tumor volume versus BTZ alone (day 28). Suvecaltamide reversed CIPN without affecting BTZ anti-cancer activity in preclinical models.

2020 ◽  
Vol 13 (5) ◽  
pp. 88
Author(s):  
Peter W. Janes ◽  
Mary E. Vail ◽  
Hui K. Gan ◽  
Andrew M. Scott

The Eph subfamily of receptor tyrosine kinases mediate cell-cell communication controlling cell and tissue patterning during development. While generally less active in adult tissues, they often re-emerge in cancers, particularly on undifferentiated or progenitor cells in tumors and the tumor microenvironment, associated with tumor initiation, angiogenesis and metastasis. Eph receptors are thus attractive therapeutic targets, and monoclonal antibodies have been commonly developed and tested for anti-cancer activity in preclinical models, and in some cases in the clinic. This review summarizes 20 years of research on various antibody-based approaches to target Eph receptors in tumors and the tumor microenvironment, including their mode of action, tumor specificity, and efficacy in pre-clinical and clinical testing.


Oncotarget ◽  
2015 ◽  
Vol 6 (41) ◽  
pp. 43310-43325 ◽  
Author(s):  
Namrata Rastogi ◽  
Shivali Duggal ◽  
Shailendra Kumar Singh ◽  
Konica Porwal ◽  
Vikas Kumar Srivastava ◽  
...  

2017 ◽  
Vol 35 (15_suppl) ◽  
pp. e13509-e13509
Author(s):  
Seema Nagpal ◽  
Tulin Dadali ◽  
Taichang Jang ◽  
Milton Merchant ◽  
Anne R. Diers ◽  
...  

e13509 Background: Glioblastoma (GB) is characterized by dysregulated metabolism, utilizing glycolysis for energy production to support unrestricted growth. BPM 31510, an ubidecarenone containing lipid nanodispersion effectuates a switch in cancer energy sourcing from glycolysis towards mitochondrial OXPHOS, i.e. reverses Warburg effect, providing rationale for its potential utility in treatment of GB. The current study investigated utility of BPM31510 alone and in combination with temozolomide. Methods: In vitro (U251-MG human GB cell line) and in vivo (C6 glioma rat model) preclinical models of GB were used to assess the anti-cancer activity of BPM 31510 alone (100 mg/kg/d) and combination with TMZ/bevacizumab (BEV). In addition, an in vitro model of acquired TMZ chemo-resistance was established by progressive adaptation of parental U251-MG cells to increasing doses of TMZ. Parental and resistant subclones (TMZ-R) were used to define activity of BPM31510 in the TMZ-refractory setting. Results: In vitro results demonstrated that BPM 31510 has anti-cancer activity in both parental and TMZ-R U251-MG cells with EC50 values of ~400 µM and 800 µM, respectively. Importantly, BPM 31510 treatment also resensitized TMZ-R cell lines to TMZ. In vivo, BPM 31510 treatment was associated with increasing duration of survival; one fifth of the rats treated achieved survival greater than 15 days post implantation, a response not observed in the control or irradiation arms of the study. Assessment of the combination of BPM 31510 with TMZ or BEV in the in vivoC6 glioma rat model is ongoing. A phase I open-label, non-randomized clinical trial to evaluate the safety and tolerability of BPM31510 in patients with recurrent BEV-refractory GB, as well as the changes in GB metabolism by SUV-PET imaging in response to treatment is under investigation. Conclusions: Preclinical data demonstrate that BPM 31510 has potential anti-cancer activity alone and in combination with standard therapy regimens and alleviates TMZ chemo-resistance in preclinical models of GB. These results provide support of a Phase 1 clinical study of BPM31510 in GB; this study is actively enrolling.


Sign in / Sign up

Export Citation Format

Share Document