scholarly journals Copper-64-Labeled 1C1m-Fc, a New Tool for TEM-1 PET Imaging and Prediction of Lutetium-177-Labeled 1C1m-Fc Therapy Efficacy and Safety

Cancers ◽  
2021 ◽  
Vol 13 (23) ◽  
pp. 5936
Author(s):  
Judith Anna Delage ◽  
Silvano Gnesin ◽  
John O. Prior ◽  
Jacques Barbet ◽  
Patricia Le Saëc ◽  
...  

1C1m-Fc, a promising anti-TEM-1 DOTA conjugate, was labeled with 64Cu to target cancer cells for PET imaging and predicting the efficacy and safety of a previously studied [177Lu]Lu-1C1m-Fc companion therapy. DOTA-conjugated 1C1m-Fc was characterized by mass spectrometry, thin layer chromatography and immunoreactivity assessment. PET/CT and biodistribution studies were performed in human neuroblastoma xenografted mice. Absorbed doses were assessed from biodistribution results and extrapolated to 177Lu based on the [64Cu]Cu-1C1m-Fc data. The immunoreactivity was ≥ 70% after 48 h of incubation in serum, and the specificity of [64Cu]Cu-1C1m-Fc for the target was validated. High-resolution PET/CT images were obtained, with the best tumor-to-organ ratios reached at 24 or 48 h and correlated with results of the biodistribution study. Healthy organs receiving the highest doses were the liver, the kidneys and the uterus. [64Cu]Cu-1C1m-Fc could be of interest to give an indication of 177Lu dosimetry for parenchymal organs. In the uterus and the tumor, characterized by specific TEM-1 expression, the 177Lu-extrapolated absorbed doses are overestimated because of the lack of later measurement time points. Nevertheless, 1C1m-Fc radiolabeled with 64Cu for imaging would appear as an interesting radionuclide companion for therapeutic application with [177Lu]Lu-1C1m-Fc.

2005 ◽  
Vol 44 (S 01) ◽  
pp. S51-S57 ◽  
Author(s):  
T. Beyer ◽  
G. Brix

Summary:Clinical studies demonstrate a gain in diagnostic accuracy by employing combined PET/CT instead of separate CT and PET imaging. However, whole-body PET/CT examinations result in a comparatively high radiation burden to patients and thus require a proper justification and optimization to avoid repeated exposure or over-exposure of patients. This review article summarizes relevant data concerning radiation exposure of patients resulting from the different components of a combined PET/CT examination and presents different imaging strategies that can help to balance the diagnostic needs and the radiation protection requirements. In addition various dose reduction measures are discussed, some of which can be adopted from CT practice, while others mandate modifications to the existing hardand software of PET/CT systems.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yoichi Shimizu ◽  
Yukihiro Nakai ◽  
Hiroyuki Watanabe ◽  
Shimpei Iikuni ◽  
Masahiro Ono ◽  
...  

Abstract Background [18F]Fluoromisonidazole ([18F]FMISO) is a PET imaging probe widely used for the detection of hypoxia. We previously reported that [18F]FMISO is metabolized to the glutathione conjugate of the reduced form in hypoxic cells. In addition, we found that the [18F]FMISO uptake level varied depending on the cellular glutathione conjugation and excretion ability such as enzyme activity of glutathione-S-transferase and expression levels of multidrug resistance-associated protein 1 (MRP1, an efflux transporter), in addition to the cellular hypoxic state. In this study, we evaluated whether MRP1 activity affected [18F]FMISO PET imaging. Methods FaDu human pharyngeal squamous cell carcinoma cells were pretreated with MRP1 inhibitors (cyclosporine A, lapatinib, or MK-571) for 1 h, incubated with [18F]FMISO for 4 h under hypoxia, and their radioactivity was then measured. FaDu tumor-bearing mice were intravenously injected with [18F]FMISO, and PET/CT images were acquired at 4 h post-injection (1st PET scan). Two days later, the same mice were pretreated with MRP1 inhibitors (cyclosporine A, lapatinib, or MK-571) for 1 h, and PET/CT images were acquired (2nd PET scan). Results FaDu cells pretreated with MRP1 inhibitors exhibited significantly higher radioactivity than those without inhibitor treatment (cyclosporine A: 6.91 ± 0.27, lapatinib: 10.03 ± 0.47, MK-571: 10.15 ± 0.44%dose/mg protein, p < 0.01). In the in vivo PET study, the SUVmean ratio in tumors [calculated as after treatment (2nd PET scan)/before treatment of MRP1 inhibitors (1st PET scan)] of the mice treated with MRP1 inhibitors was significantly higher than those of control mice (cyclosporine A: 2.6 ± 0.7, lapatinib: 2.2 ± 0.7, MK-571: 2.2 ± 0.7, control: 1.2 ± 0.2, p < 0.05). Conclusion In this study, we revealed that MRP1 inhibitors increase [18F]FMISO accumulation in hypoxic cells. This suggests that [18F]FMISO-PET imaging is affected by MRP1 inhibitors independent of the hypoxic state.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 722
Author(s):  
Florian Rosar ◽  
Jonas Krause ◽  
Mark Bartholomä ◽  
Stephan Maus ◽  
Tobias Stemler ◽  
...  

The use of 225Ac in prostate-specific membrane antigen (PSMA)-targeted radioligand therapy (RLT), either as monotherapy or in combination with 177Lu, is a promising therapy approach in patients with metastatic castration-resistant prostate carcinoma (mCRPC). In this study, we report the efficacy and safety of [225Ac]Ac-PSMA-617 augmented [177Lu]Lu-PSMA-617 RLT in 177Lu-naive mCRPC patients (n = 15) with poor prognosis (presence of visceral metastases, high total tumor burden with diffuse bone metastases or a short PSA doubling time of <2 months). Biochemical (by PSA serum value) and molecular imaging response (by [68Ga]Ga-PSMA-11 PET/CT) was assessed after two cycles of [177Lu]Lu-PSMA-617 RLT, with at least one [225Ac]Ac-PSMA-617 augmentation. In addition, PSA-based progression-free survival (PSA-PFS), overall survival (OS) and toxicity (according to CTCAE) were analyzed. We observed a biochemical- and molecular imaging-based partial remission in 53.3% (8/15) and 66.7% (10/15) of patients, respectively. The median PSA-PFS and OS was 9.1 and 14.8 months, respectively. No serious acute adverse events were recorded. Two out of fifteen patients experienced grade 3 anemia. No other grade 3/4 toxicities were observed. RLT-related xerostomia (grade 1/2) was recorded in 2/15 patients. Our data showed a high clinical efficacy with a favorable side effects profile of [225Ac]Ac-PSMA-617 augmented [177Lu]Lu-PSMA-617 RLT in this highly challenging patient cohort.


Author(s):  
Julie Tanguy ◽  
Françoise Goirand ◽  
Alexanne Bouchard ◽  
Jame Frenay ◽  
Mathieu Moreau ◽  
...  

Abstract Purpose Idiopathic pulmonary fibrosis (IPF) is a progressive disease with poor outcome and limited therapeutic options. Imaging of IPF is limited to high-resolution computed tomography (HRCT) which is often not sufficient for a definite diagnosis and has a limited impact on therapeutic decision and patient management. Hypoxia of the lung is a significant feature of IPF but its role on disease progression remains elusive. Thus, the aim of our study was to evaluate hypoxia imaging with [18F]FMISO as a predictive biomarker of disease progression and therapy efficacy in preclinical models of lung fibrosis in comparison with [18F]FDG. Methods Eight-week-old C57/BL6 mice received an intratracheal administration of bleomycin (BLM) at day (D) 0 to initiate lung fibrosis. Mice received pirfenidone (300 mg/kg) or nintedanib (60 mg/kg) by daily gavage from D9 to D23. Mice underwent successive PET/CT imaging at several stages of the disease (baseline, D8/D9, D15/D16, D22/D23) with [18F]FDG and [18F]FMISO. Histological determination of the lung expression of HIF-1α and GLUT-1 was performed at D23. Results We demonstrate that mean lung density on CT as well as [18F]FDG and [18F]FMISO uptakes are upregulated in established lung fibrosis (1.4-, 2.6- and 3.2-fold increase respectively). At early stages, lung areas with [18F]FMISO uptake are still appearing normal on CT scans and correspond to areas which will deteriorate towards fibrotic lesions at later timepoints. Nintedanib and pirfenidone dramatically and rapidly decreased mean lung density on CT as well as [18F]FDG and [18F]FMISO lung uptakes (pirfenidone: 1.2-, 2.9- and 2.6-fold decrease; nintedanib: 1.2-, 2.3- and 2.5-fold decrease respectively). Early [18F]FMISO lung uptake was correlated with aggressive disease progression and better nintedanib efficacy. Conclusion [18F]FMISO PET imaging is a promising tool to early detect and monitor lung fibrosis progression and therapy efficacy.


2020 ◽  
Vol 7 (1) ◽  
Author(s):  
Amy J. Weisman ◽  
Jihyun Kim ◽  
Inki Lee ◽  
Kathleen M. McCarten ◽  
Sandy Kessel ◽  
...  

Abstract Purpose For pediatric lymphoma, quantitative FDG PET/CT imaging features such as metabolic tumor volume (MTV) are important for prognosis and risk stratification strategies. However, feature extraction is difficult and time-consuming in cases of high disease burden. The purpose of this study was to fully automate the measurement of PET imaging features in PET/CT images of pediatric lymphoma. Methods 18F-FDG PET/CT baseline images of 100 pediatric Hodgkin lymphoma patients were retrospectively analyzed. Two nuclear medicine physicians identified and segmented FDG avid disease using PET thresholding methods. Both PET and CT images were used as inputs to a three-dimensional patch-based, multi-resolution pathway convolutional neural network architecture, DeepMedic. The model was trained to replicate physician segmentations using an ensemble of three networks trained with 5-fold cross-validation. The maximum SUV (SUVmax), MTV, total lesion glycolysis (TLG), surface-area-to-volume ratio (SA/MTV), and a measure of disease spread (Dmaxpatient) were extracted from the model output. Pearson’s correlation coefficient and relative percent differences were calculated between automated and physician-extracted features. Results Median Dice similarity coefficient of patient contours between automated and physician contours was 0.86 (IQR 0.78–0.91). Automated SUVmax values matched exactly the physician determined values in 81/100 cases, with Pearson’s correlation coefficient (R) of 0.95. Automated MTV was strongly correlated with physician MTV (R = 0.88), though it was slightly underestimated with a median (IQR) relative difference of − 4.3% (− 10.0–5.7%). Agreement of TLG was excellent (R = 0.94), with median (IQR) relative difference of − 0.4% (− 5.2–7.0%). Median relative percent differences were 6.8% (R = 0.91; IQR 1.6–4.3%) for SA/MTV, and 4.5% (R = 0.51; IQR − 7.5–40.9%) for Dmaxpatient, which was the most difficult feature to quantify automatically. Conclusions An automated method using an ensemble of multi-resolution pathway 3D CNNs was able to quantify PET imaging features of lymphoma on baseline FDG PET/CT images with excellent agreement to reference physician PET segmentation. Automated methods with faster throughput for PET quantitation, such as MTV and TLG, show promise in more accessible clinical and research applications.


Author(s):  
Bruno Madore ◽  
Gabriela Belsley ◽  
Cheng-Chieh Cheng ◽  
Frank Preiswerk ◽  
Marie Foley Kijewski ◽  
...  

Abstract Breathing motion can displace internal organs by up to several cm; as such, it is a primary factor limiting image quality in medical imaging. Motion can also complicate matters when trying to fuse images from different modalities, acquired at different locations and/or on different days. Currently available devices for monitoring breathing motion often do so indirectly, by detecting changes in the outline of the torso rather than the internal motion itself, and these devices are often fixed to floors, ceilings or walls, and thus cannot accompany patients from one location to another. We have developed small ultrasound-based sensors, referred to as ‘organ configuration motion’ (OCM) sensors, that attach to the skin and provide rich motion-sensitive information. In the present work we tested the ability of OCM sensors to enable respiratory gating during in vivo PET imaging. A motion phantom involving an FDG solution was assembled, and two cancer patients scheduled for a clinical PET/CT exam were recruited for this study. OCM signals were used to help reconstruct phantom and in vivo data into time series of motion-resolved images. As expected, the motion-resolved images captured the underlying motion. In Patient #1, a single large lesion proved to be mostly stationary through the breathing cycle. However, in Patient #2, several small lesions were mobile during breathing, and our proposed new approach captured their breathing-related displacements. In summary, a relatively inexpensive hardware solution was developed here for respiration monitoring. Because the proposed sensors attach to the skin, as opposed to walls or ceilings, they can accompany patients from one procedure to the next, potentially allowing data gathered in different places and at different times to be combined and compared in ways that account for breathing motion.


Sign in / Sign up

Export Citation Format

Share Document