scholarly journals Preparation and Characterization of Ni/ZrTiAlOx Catalyst via Sol-Gel and Impregnation Methods for Low Temperature Dry Reforming of Methane

Catalysts ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 1335
Author(s):  
Seol A Shin ◽  
Ali Alizadeh Eslami ◽  
Young Su Noh ◽  
Hyun-tae Song ◽  
Hyun Dong Kim ◽  
...  

Recently, the dry reforming of methane (DRM) has received much attention as a conversion technology of greenhouse gases. Ni-based catalysts supported on ternary metal oxide composite (ZrTiAlOx) were prepared to improve the coke resistance properties in the DRM (CH4:CO2 = 1) at low temperature. The ZrTiAlOx supports with different ratios of Zr/Ti were prepared through the modified Pechini sol-gel method, and then the Ni was impregnated on the synthesized support via the incipient wetness impregnation method. Considering the Zr/Ti ratios, different catalytic activity and durability in the DRM were identified. The Ni/ZrTiAlOx catalyst with Zr/Ti of 2 exhibited enhanced coke inhibition property compared to the others at low temperature DRM for 50 h. The catalysts with a high Zr/Ti ratio under the same condition were rapidly deactivated, while the catalyst with a low Zr/Ti ratio showed deficient activity. It was found from temperature-programmed surface reactions (TPSR) and DRIFTS (Diffuse Reflectance Infrared Fourier Transform Spectroscopy) analysis that the addition of Ti has led in to higher catalytic stability at Zr/Ti = 2, which could be as a result of oxygen vacancies generated by the ternary metal oxides. Ni/ZrTiAlOx catalyst with ratio of Zr/Ti = 2 showed high stability and good catalytic activity towards DRM for the production of syngas.

Energies ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3347
Author(s):  
Arslan Mazhar ◽  
Asif Hussain Khoja ◽  
Abul Kalam Azad ◽  
Faisal Mushtaq ◽  
Salman Raza Naqvi ◽  
...  

Co/TiO2–MgAl2O4 was investigated in a fixed bed reactor for the dry reforming of methane (DRM) process. Co/TiO2–MgAl2O4 was prepared by modified co-precipitation, followed by the hydrothermal method. The active metal Co was loaded via the wetness impregnation method. The prepared catalyst was characterized by XRD, SEM, TGA, and FTIR. The performance of Co/TiO2–MgAl2O4 for the DRM process was investigated in a reactor with a temperature of 750 °C, a feed ratio (CO2/CH4) of 1, a catalyst loading of 0.5 g, and a feed flow rate of 20 mL min−1. The effect of support interaction with metal and the composite were studied for catalytic activity, the composite showing significantly improved results. Moreover, among the tested Co loadings, 5 wt% Co over the TiO2–MgAl2O4 composite shows the best catalytic performance. The 5%Co/TiO2–MgAl2O4 improved the CH4 and CO2 conversion by up to 70% and 80%, respectively, while the selectivity of H2 and CO improved to 43% and 46.5%, respectively. The achieved H2/CO ratio of 0.9 was due to the excess amount of CO produced because of the higher conversion rate of CO2 and the surface carbon reaction with oxygen species. Furthermore, in a time on stream (TOS) test, the catalyst exhibited 75 h of stability with significant catalytic activity. Catalyst potential lies in catalyst stability and performance results, thus encouraging the further investigation and use of the catalyst for the long-run DRM process.


2011 ◽  
Vol 364 ◽  
pp. 519-523 ◽  
Author(s):  
S. Sivasangar ◽  
Yun Hin Taufiq-Yap

Methane reforming is the most feasible techniques to produce hydrogen for commercial usage. Hence, dry reforming is the environment friendly method that uses green house gases such as CO2and methane to produce fuel gas. Catalysts play a vital role in methane conversion by enhancing the reforming process. In this study Ni/γ-Al2O3was selected as based catalyst and CeO2and Fe2O3dopants were added to investigate their effect on catalytic activity in dry reforming. The catalysts synthesized through wet impregnation method and characterized by using XRD, TEM and SEM-EDX. The catalytic tests were carried out using temperature programmed reaction (TPRn) and the products were detected by using an online mass spectrometer. The results revealed that these dopants significantly affect the catalytic activity and selectivity of the catalyst during reaction. Hence, Fe2O3doped catalyst shows higher hydrogen production with stable catalytic activity.


Processes ◽  
2020 ◽  
Vol 8 (5) ◽  
pp. 522
Author(s):  
Anis H. Fakeeha ◽  
Abdulaziz A. Bagabas ◽  
Mahmud S. Lanre ◽  
Ahmed I. Osman ◽  
Samsudeen O. Kasim ◽  
...  

Dry reforming of CH4 was conducted over promoted Ni catalysts, supported on mesoporous gamma-alumina. The Ni catalysts were promoted by various metal oxides (CuO, ZnO, Ga2O3, or Gd2O3) and were synthesized by the incipient wetness impregnation method. The influence of the promoters on the catalyst stability, coke deposition, and H2/CO mole ratio was investigated. Stability tests were carried out for 460 min. The H2 yield was 87% over 5Ni+1Gd/Al, while the CH4 and CO2 conversions were found to decrease in the following order: 5Ni+1Gd/Al > 5Ni+1Ga/Al > 5Ni+1Zn/Al > 5Ni/Al > 5Ni+1Cu/Al. The high catalytic performance of 5Ni+1Gd/Al, 5Ni+1Ga/Al, and 5Ni+1Zn/Al was found to be closely related to their contents of NiO species, which interacted moderately and strongly with the support, whereas free NiO in 5Ni+1Cu/Al made it catalytically inactive, even than 5Ni/Al. The 5Ni+1Gd/Al catalyst showed the highest CH4 conversion of 83% with H2/CO mole ratio of ~1.0.


2020 ◽  
Vol 72 (4) ◽  
pp. 99-109
Author(s):  
Xiaofeng Zhu ◽  
Teng Zhao ◽  
Yufan Huang ◽  
Zijun Wang

Layered porous SiO2 (V-SiO2) was designed and prepared from vermiculite by expansion-acidification method, and then used as a catalyst support to prepare Ni/V-SiO2 for dry reforming of methane. It is well known that sintering and carbon deposition of metal particles are two main problems in deactivation of nickel-based catalysts for methane dry reforming. It is reported that strong metal support interaction is a possible solution. Here, a Ni/V-SiO2-H catalyst derived from Ni-phyllosilicate was developed, and compared with the catalyst Ni/V-SiO2-IM by impregnation method. The results showed that the Ni/V-SiO2-H catalyst had high catalytic activity and stability, and the CH4 conversion reached 71.7% at 700 �C. The reason is that on the one hand, the active metal particles in the catalyst are small (8.3 nm) and relatively evenly dispersed; on the other hand, the catalyst has strong metal support interaction, which improves the anti sintering ability of the catalyst and affects the catalytic activity. It is considered that V-SiO2 as a catalyst support for the preparation of Ni-phyllosilicate may have wide application.


Membranes ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 518
Author(s):  
Cecilia Mateos-Pedrero ◽  
Miguel A. Soria ◽  
Antonio Guerrero-Ruíz ◽  
Inmaculada Rodríguez-Ramos

The external surface of a commercial porous stainless steel (PSS) was modified by either oxidation in air at varying temperatures (600, 700, and 800 °C) or coating with different oxides (SiO2, Al2O3, and ZrO2). Among them, PSS-ZrO2 appears as the most suitable carrier for the synthesis of the Pd membrane. A composite Pd membrane supported on the PSS-ZrO2 substrate was prepared by the electroless plating deposition method. Supported Ru catalysts were first evaluated for the low-temperature methane dry reforming (DRM) reaction in a continuous flow reactor (CR). Ru/ZrO2-La2O3 catalyst was found to be active and stable, so it was used in a membrane reactor (MR), which enhances the methane conversions above the equilibrium values. The influence of adding H2O to the feed of DRM was investigated over a Ru/ZrO2-La2O3 catalyst in the MR. Activity results are compared with those measured in a CR. The addition of H2O into the feed favors other reactions such as Water-Gas Shift (RWGS) and Steam Reforming (SR), which occur together with DRM, resulting in a dramatic decrease of CO2 conversion and CO production, but a marked increase of H2 yield.


Processes ◽  
2021 ◽  
Vol 9 (1) ◽  
pp. 157
Author(s):  
Ahmed Sadeq Al-Fatesh ◽  
Mayankkumar Lakshmanbhai Chaudhary ◽  
Anis Hamza Fakeeha ◽  
Ahmed Aidid Ibrahim ◽  
Fahad Al-Mubaddel ◽  
...  

H2 production through dry reforming of methane (DRM) is a hot topic amidst growing environmental and atom-economy concerns. Loading Ni-based reducible mixed oxide systems onto a thermally stable support is a reliable approach for obtaining catalysts of good dispersion and high stability. Herein, NiO was dispersed over MOx-modified-γ-Al2O3 (M = Ti, Mo, Si, or W; x = 2 or 3) through incipient wetness impregnation followed by calcination. The obtained catalyst systems were characterized by infrared, ultraviolet–visible, and X-ray photoelectron spectroscopies, and H2 temperature-programmed reduction. The mentioned synthetic procedure afforded the proper nucleation of different NiO-containing mixed oxides and/or interacting-NiO species. With different modifiers, the interaction of NiO with the γ-Al2O3 support was found to change, the Ni2+ environment was reformed exclusively, and the tendency of NiO species to undergo reduction was modified greatly. Catalyst systems 5Ni3MAl (M = Si, W) comprised a variety of species, whereby NiO interacted with the modifier and the support (e.g., NiSiO3, NiAl2O4, and NiWO3). These two catalyst systems displayed equal efficiency, >70% H2 yield at 800 °C, and were thermally stable for up to 420 min on stream. 5Ni3SiAl catalyst regained nearly all its activity during regeneration for up to two cycles.


2013 ◽  
Vol 129 ◽  
pp. 450-459 ◽  
Author(s):  
B. Bachiller-Baeza ◽  
C. Mateos-Pedrero ◽  
M.A. Soria ◽  
A. Guerrero-Ruiz ◽  
U. Rodemerck ◽  
...  

ChemPlusChem ◽  
2016 ◽  
Vol 81 (4) ◽  
pp. 370-377 ◽  
Author(s):  
Prashanth W. Menezes ◽  
Arindam Indra ◽  
Patrick Littlewood ◽  
Caren Göbel ◽  
Reinhard Schomäcker ◽  
...  

2018 ◽  
Vol 169 ◽  
pp. 199-206 ◽  
Author(s):  
Ye Wang ◽  
Lu Yao ◽  
Shenghong Wang ◽  
Dehua Mao ◽  
Changwei Hu

2017 ◽  
Vol 898 ◽  
pp. 1905-1915 ◽  
Author(s):  
Kai Qi ◽  
Jun Lin Xie ◽  
Feng Xiang Li ◽  
Feng He

The samples of MnOx/TiO2 catalysts supported on cordierite honeycomb ceramics were prepared by a sol-gel-impregnation method, and evaluated for low-temperature (353-473 K) selective catalytic reduction (SCR) of NOx with NH3. The influences of pretreatment on cordierite and catalyst dosage were investigated at first and optimized as follows: pickling for cordierite honeycomb ceramics with 1 mol/L HNO3 for 3 h prior to loading procedure as well as the catalyst dosage of 3-5 wt.%. The activity results indicated that there was an optimum working condition for MnOx/TiO2/cordierite catalysts: NH3/NO molar ratio=1.1, [O2]=3 vol.%, GHSV=5514 h-1, the highest activity of nearly 100% NO conversion could be obtained. As a comparison, the performances of commercialized vanadium-based honeycomb catalyst were also employed, which revealed the narrower scope of application of GHSV and the higher active temperature window. In conclusion, it turns out that the prepared MnOx/TiO2/cordierite catalysts are more applicable as a low-temperature SCR catalyst for NOx removal in a more complicated application environment.


Sign in / Sign up

Export Citation Format

Share Document