scholarly journals Highly Efficient Photocatalytic Cr(VI) Reduction by Lead Molybdate Wrapped with D-A Conjugated Polymer under Visible Light

Catalysts ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 106
Author(s):  
Ding Liu ◽  
Yin Wang ◽  
Xiao Xu ◽  
Yonggang Xiang ◽  
Zixin Yang ◽  
...  

Well-designed composite photocatalysts are of increasing concern due to their enhanced catalytic performance compared to a single component. Here, a photocatalyst composed of PbMoO4 (PMO) and poly-benzothiadiazole (BBT, a D-A-conjugated polymer) was successfully synthesized by BBT polymerization on the surface of the PMO. The resultant BBT-PMO with a heterojunction structure represented an enhanced ability to reduce highly toxic heavy metal Cr(VI) from water under visible light irradiation. The 16.7% BBT-PMO(N, nanoscale) showed the best performance. The corresponding kobs over the 16.7% BBT-PMO(N) was 26-fold (or 53-fold) of that over the pure BBT (or pristine PMO(N)), and this activity was maintained after four cycles. The reasons for its good performance are discussed in detail based on the experimental results. Moreover, the synthesis of the BBT in situ of the PMO also altered the morphology of the BBT component, increasing the specific surface area of the BBT-PMO(N) and endowing it with the ability to adsorb Cr(VI). Additionally, the photocatalyst was also environmentally friendly as such a wrapped structure could sustain the high stability of the PMO without dissociation. This work provides a good strategy for efficient photocatalytic Cr(VI) reduction by designing an organic–inorganic hybrid system with high redox capacity.

2021 ◽  
Author(s):  
Jingjing Xu ◽  
Yang liu ◽  
xueping li ◽  
Mindong Chen

Direct Z-scheme Bi3TaO7/Zn0.5Cd0.5S composite photocatalysts were successfully prepared via an in-situ growth hydrothermal method. The photocatalytic activities of composites were investigated by the degradation of levofloxacin under visible light. And...


2018 ◽  
Vol 78 (11) ◽  
pp. 2321-2327 ◽  
Author(s):  
Yan Ma ◽  
Zhihuan Zhao ◽  
Jimin Fan ◽  
Zhanyong Gu ◽  
Bin Zhang ◽  
...  

Abstract Using tetra-n-butyl titanate as raw material and fly ash cenospheres (FAC) as carrier, the photocatalysts of Ag-TON/FAC were successfully prepared by solvothermal and in-situ hydrolysis method. These visible light photocatalysts were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), fluorescence spectroscopy (FL) and UV–vis diffuse reflectance spectra (DRS). In this study, methyl orange and ciprofloxacin were used as wastewater degradation targets to investigate the effect of the amount of titanium dioxide and the amount of Ag doping on the activity of photocatalysts. On the basis of this, the optimal ratio of TiO2 to FAC was 2:1 and the optimum doping ratio of Ag was determined to be 15 wt.%. The composite photocatalysts dispersed uniformly and were easy to recycle and reuse, which were benefits in fully utilizing the solar energy. The degradation efficiency remained at more than 60% after being renewed five times for MO and ciprofloxacin. The photocatalysts of Ag-TON/FAC can reduce the environmental burden caused by FAC also.


CrystEngComm ◽  
2014 ◽  
Vol 16 (48) ◽  
pp. 10943-10948 ◽  
Author(s):  
Juan Li ◽  
Jian Yan ◽  
Chengzhan Liu ◽  
Lihong Dong ◽  
Hui Lv ◽  
...  

A ternary composite ZnO–Ag–polypyrrole was synthesized through a fast reaction between zinc acetate and hexamethylenetetramine followed by an in situ surface polymerization process. The sample exhibited a superior catalytic performance in the degradation of methylene blue under both UV irradiation and visible light.


2020 ◽  
Author(s):  
Zhaoqing Li ◽  
Zhufeng Liu ◽  
Xiao Yang ◽  
Peng Chen ◽  
Lei Yang ◽  
...  

Abstract According to the composite design, a series of black TiO2/graphene composites were synthesized to improve its photocatalytic activity. TiO2 is generated in situ on the surface of graphene by a facile sol-gel method. The combination of graphene and TiO2 was beneficial for eliminating the opportunity of photogenerated electron-hole recombination due to the excellent conductivity of graphene. In the subsequent hydrogenation process, the self-doping Ti3+ was introduced accompanied by the crystallization of amorphous TiO2. The narrowed bandgap caused by self-doping Ti3+ enhanced the visible light absorption and make the composites appear black. Both of them improved the photocatalytic performance of the synthesized black TiO2/graphene composites. The band structure of the composite was analyzed by valence band XPS, revealing the reason for the high visible light catalytic performance of the composite. The results proved that the black TiO2/graphene composites synthesized show attractive potential for applications in environmental and energy issues.


2018 ◽  
Vol 47 (42) ◽  
pp. 15189-15196 ◽  
Author(s):  
Qun Liu ◽  
Xiaodan Hong ◽  
Xin Zhang ◽  
Xingyan You ◽  
Xin Zhao ◽  
...  

Hierarchical structured Cu2S nanorods with monoclinic and hexagonal crystal phases are in situ grown on copper sheets, showing remarkable electrochemical activity in supercapacitors and excellent catalytic performance in photocatalysis.


Catalysts ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 297 ◽  
Author(s):  
Kamal Prasad Sapkota ◽  
Insup Lee ◽  
Md. Abu Hanif ◽  
Md. Akherul Islam ◽  
Jeasmin Akter ◽  
...  

We report enhanced catalytic action of a series of copper(II)-oxide-single-walled carbon nanotube (CuO-SWCNT) composite photocatalysts (abbreviated as CuO-SWCNT-0.5, CuO-SWCNT-2, and CuO-SWCNT-5, where 0.5, 2, and 5 represent the calcination time in hours) synthesized via recrystallization followed by calcination. The photocatalytic performance of the fabricated nanocomposites was examined by evaluating the degradation of methylene blue (MB) under irradiation with visible light. All of the as-fabricated nanocomposites were effective photocatalysts for the photodegradation of a MB solution; however, the CuO-SWCNT-5 displayed the best photocatalytic ability among the investigated catalysts, achieving 97.33% degradation of MB in 2 h under visible-light irradiation. The photocatalytic action of the nanocomposites was remarkably higher than that of pristine CuO nanocrystals fabricated using the same route. The recyclability of the photocatalyst was also investigated; the CuO-SWCNT-5 catalyst could be reused for three cycles without substantial degradation of its catalytic performance or morphology.


2017 ◽  
Vol 5 (20) ◽  
pp. 9671-9681 ◽  
Author(s):  
Xiaowei Shi ◽  
Mamoru Fujitsuka ◽  
Zaizhu Lou ◽  
Peng Zhang ◽  
Tetsuro Majima

The visible-light-driven water splitting process is highly attractive for alternative energy utilization, while developing efficient, earth-abundant, and environmentally friendly photocatalysts for the hydrogen evolution reaction has remained a major challenge.


Author(s):  
Xianglong Yang ◽  
Yonggang Xiang ◽  
Xuepeng Wang ◽  
Shu Li ◽  
Hao Chen ◽  
...  

Search for appropriate materials with favorable staggered energy band arrangements is important and of great challenge to fabricate Z-scheme photocatalysts with high activity in visible light. In this study, we demonstrated a facile and feasible strategy to construct highly active organic-inorganic Z-scheme hybrids (P-BMO) with linear pyrene-based conjugated polymer (P17-E) and Bi2MoO6 via in-situ palladium-catalyzed cross-coupling reaction. Characterization results revealed C-O chemical bond formed at the heterointerface between P17-E and Bi2MoO6 after in-situ polycondensation and endowed the hybrids with observably improved photogenerated carries transfer capability. Visible light driven photocatalytic removal of ciprofloxacin and Cr(VI) were significantly enhanced after the incorporation of P17-E into Bi2MoO6 whether with the morphology of nanosheets, nanobelts or microspheres. Moreover, this P-BMO hybrids were also found to exhibit sustainable excellent photocatalytic performance after four runs of photocatalytic evaluation test, suggesting its high activity and stability. To better eliminate the redox ability enhancement of P-BMO, a reasonable Z-scheme electrons transferring mechanism between P17-E and Bi2MoO6 was proposed and proved by the determination of •O2– and •OH and Pt nanoparticles photodeposition experiments. This work might provide a viable source and insight into the design of Z-scheme photocatalysts with excellent redox ability for environmental remediation.


Sign in / Sign up

Export Citation Format

Share Document