Facile synthesis of CoX (X = S, P) as an efficient electrocatalyst for hydrogen evolution reaction

2015 ◽  
Vol 3 (24) ◽  
pp. 13066-13071 ◽  
Author(s):  
Jiayuan Li ◽  
Xuemei Zhou ◽  
Zhaoming Xia ◽  
Zhiyun Zhang ◽  
Jing Li ◽  
...  

HER catalytic activity of CoX (X = S, P) nanocatalysts prepared through a facile and controllable synthesis by the chemical conversion of thin Co(OH)2 nanoplates was studied. The better HER performance of CoP could be derived from its intrinsically positive charged nature of the metal center Co, the long bond length of Co–P and the abundant catalytic active sites toward HER.

Catalysts ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 161
Author(s):  
Fangtao Li ◽  
Xiaoxu Wang ◽  
Rongming Wang

As a typical two-dimensional (2D) MXene, Ti3C2O2 has been considered as a potential material for high-performance hydrogen evolution reaction (HER) catalyst, due to its anticorrosion and hydrophilic surface. However, it is still a challenge to improve the Ti3C2O2 surficial HER catalytic activity. In this work, we investigated the HER activity of Ti3C2O2 after the surface was doped with S, Se, and Te by the first principles method. The results indicated that the HER activity of Ti3C2O2 is improved after being doped with S, Se, Te because the Gibbs free energy of hydrogen adsorption (ΔGH) is increased from −2.19 eV to 0.08 eV. Furthermore, we also found that the ΔGH of Ti3C2O2 increased from 0.182 eV to 0.08 eV with the doping concentration varied from 5.5% to 16.7%. The HER catalytic activity improvement of Ti3C2O2 is attributed to the local crystal structure distortion in catalytic active sites and Fermi level shift leads to the p-d orbital hybridization. Our results pave a new avenue for preparing a low-cost and high performance HER catalyst.


Nanoscale ◽  
2018 ◽  
Vol 10 (4) ◽  
pp. 1766-1773 ◽  
Author(s):  
Xingyue Qian ◽  
Junfei Ding ◽  
Jianli Zhang ◽  
Yue Zhang ◽  
Yining Wang ◽  
...  

The molybdenum disulfide/carbon nitride (MoS2/C3N4-3) nanosheets with ultrathin thickness present superior catalytic activity for hydrogen evolution reaction for water splitting.


Author(s):  
Yonggang Liu ◽  
Haijing Li ◽  
Junfu Li ◽  
Xiaoshuang Ma ◽  
Zhiming Cui ◽  
...  

Two-dimensional (2D) rhenium disulfide (ReS2) has been attracting immense interests as highly promising hydrogen evolution reaction (HER) electrocatalyst recently. However, the HER catalytic active sites of ReS2 are still limited...


Metals ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1451
Author(s):  
Changhong Chen ◽  
Ningkang Qian ◽  
Junjie Li ◽  
Xiao Li ◽  
Deren Yang ◽  
...  

Ru is a key component of electrocatalysts for hydrogen evolution reaction (HER), especially in alkaline media. However, the catalytic activity and durability of Ru-based HER electrocatalysts are still far from satisfactory. Here we report a solvothermal approach for the synthesis of PdCuRu porous nanoplates with different Ru compositions by using Pd nanoplates as the seeds. The PdCuRu porous nanoplates were formed through underpotential deposition (UPD) of Cu on Pd, followed by alloying Cu with Pd through interdiffusion and galvanic replacement between Cu atoms and Ru precursor simultaneously. When evaluated as HER electrocatalysts, the PdCuRu porous nanoplates exhibited excellent catalytic activity and durability. Of them, the Pd24Cu29Ru47/C achieved the lowest overpotential (40.7 mV) and smallest Tafel slope (37.5 mV dec−1) in an alkaline solution (much better than commercial Pt/C). In addition, the Pd24Cu29Ru47/C only lost 17% of its current density during a stability test for 10 h, while commercial Pt/C had a 59.5% drop under the same conditions. We believe that the electron coupling between three metals, unique porous structure, and strong capability of Ru for water dissociation are responsible for such an enhancement in HER performance.


Materials ◽  
2018 ◽  
Vol 11 (9) ◽  
pp. 1520 ◽  
Author(s):  
Dan Li ◽  
Yang Li ◽  
Bowei Zhang ◽  
Yu Lui ◽  
Sivaprasad Mooni ◽  
...  

Pt as a chemical inert metal has been widely applied as the counter electrode in various electrochemical measurements. However, it can also be dissolved and redeposit to the working electrode under certain electrochemical circumstances. Herein we demonstrated a cyclic voltammetry (CV) cycling method to synthesize a catalyst comprising inserted Pt nanoparticles into MoS2 nanoflake stack structures on stainless steel mesh (SSM). The binder-free composite structure exhibits significantly enhanced hydrogen evolution reaction (HER) catalytic activity with an overpotentials of 87 mV at 10 mA cm−2. The deposited Pt nanoparticles significantly enhance the catalytic activity through changing the structure of MoS2 and increasing the amount of active sites. This work provides a new way forward for rational design of the nano-electrocatalysts.


2018 ◽  
Vol 6 (41) ◽  
pp. 20005-20014 ◽  
Author(s):  
Seung Hyo Noh ◽  
Jeemin Hwang ◽  
Joonhee Kang ◽  
Min Ho Seo ◽  
Daehyeon Choi ◽  
...  

This study establishes big data for the catalytic properties of two-dimensional metal-dichalcogenides (2D-TMDs) toward the hydrogen evolution reaction (HER). In addition to conventionally known active sites of edges, it proposes that terrace sites (or the basal plane) can be substantially activated for the HER.


2020 ◽  
Vol 8 (43) ◽  
pp. 22607-22612
Author(s):  
Huishan Shang ◽  
Zhenghang Zhao ◽  
Jiajing Pei ◽  
Zhuoli Jiang ◽  
Danni Zhou ◽  
...  

An isolated Ru-modified FeP catalyst was designed with boosted catalytic performance for the hydrogen evolution reaction. Further, we revealed that the bond-length-extended isolated Ru(+3)–P4–Fe serve as active sites through operando XAS analysis.


Nanomaterials ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 3273
Author(s):  
Kunjie Wang ◽  
Jiahui Zhang ◽  
Yachen Ye ◽  
Hongbin Ma ◽  
Bingxin Liu ◽  
...  

1T-phase molybdenum disulfide is supposed to be one of the non-precious metal-based electrocatalysts for the hydrogen evolution reaction with the highest potential. Herein, 1T-MoS2 nanosheets were anchored on N-doped carbon nanotubes by a simple hydrothermal process with the assistance of urea promotion transition of the 1T phase. Based on the 1T-MoS2 nanosheets anchored on the N-doped carbon nanotubes structures, 1T-MoS2 nanosheets can be said to have highly exposed active sites from edges and the basal plane, and the dopant N in carbon nanotubes can promote electron transfer between N-doped carbon nanotubes and 1T-MoS2 nanosheets. With the synergistic effects of this structure, the excellent 1T-MoS2/ N-doped carbon nanotubes catalyst has a small overpotential of 150 mV at 10 mA cm−2, a relatively low Tafel slope of 63 mV dec−1, and superior stability. This work proposes a new strategy to design high-performance hydrogen evolution reaction catalysts.


Sign in / Sign up

Export Citation Format

Share Document