scholarly journals Evaluation of 3,3′-Triazolyl Biisoquinoline N,N′-Dioxide Catalysts for Asymmetric Hydrosilylation of Hydrazones with Trichlorosilane

Catalysts ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1103
Author(s):  
Shiyu Sun ◽  
Changgong Xu ◽  
Jamielyn Jarvis ◽  
Phillip Nader ◽  
Brandon Naumann ◽  
...  

A new class of axial-chiral biisoquinoline N,N′-dioxides was evaluated as catalysts for the enantioselective hydrosilylation of acyl hydrazones with trichlorosilane. While these catalysts provided poor to moderate reactivity and enantioselectivity, this study represents the first example of the organocatalytic asymmetric reduction of acyl hydrazones. In addition, the structures and energies of two possible diastereomeric catalyst–trichlorosilane complexes (2a–HSiCl3) were analyzed using density functional theory calculations.

Nanoscale ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 5995-6001 ◽  
Author(s):  
Qiang Gao ◽  
Hongbin Zhang

Based on density functional theory calculations, we investigated two-dimensional in-plane ordered MXenes (i-MXenes), focusing particularly on their magnetic properties.


2006 ◽  
Vol 71 (11-12) ◽  
pp. 1525-1531 ◽  
Author(s):  
Wojciech Grochala

The enthalpy of four polymorphs of CaN has been scrutinized at 0 and 100 GPa using density functional theory calculations. It is shown that structures of diamagnetic calcium diazenide (Ca2N2) are preferred over the cubic ferromagnetic polymorph (CaN) postulated before, both at 0 and 100 GPa.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Chih-Chuen Lin ◽  
Phani Motamarri ◽  
Vikram Gavini

AbstractWe present a tensor-structured algorithm for efficient large-scale density functional theory (DFT) calculations by constructing a Tucker tensor basis that is adapted to the Kohn–Sham Hamiltonian and localized in real-space. The proposed approach uses an additive separable approximation to the Kohn–Sham Hamiltonian and an L1 localization technique to generate the 1-D localized functions that constitute the Tucker tensor basis. Numerical results show that the resulting Tucker tensor basis exhibits exponential convergence in the ground-state energy with increasing Tucker rank. Further, the proposed tensor-structured algorithm demonstrated sub-quadratic scaling with system-size for both systems with and without a gap, and involving many thousands of atoms. This reduced-order scaling has also resulted in the proposed approach outperforming plane-wave DFT implementation for systems beyond 2000 electrons.


2021 ◽  
Vol 60 (8) ◽  
pp. 6016-6026
Author(s):  
Aydar Rakhmatullin ◽  
Maxim S. Molokeev ◽  
Graham King ◽  
Ilya B. Polovov ◽  
Konstantin V. Maksimtsev ◽  
...  

Author(s):  
Lijuan Meng ◽  
Jinlian Lu ◽  
Yujie Bai ◽  
Lili Liu ◽  
Tang Jingyi ◽  
...  

Understanding the fundamentals of chemical vapor deposition bilayer graphene growth is crucial for its synthesis. By employing density functional theory calculations and classical molecular dynamics simulations, we have investigated the...


2021 ◽  
Vol 3 (4) ◽  
Author(s):  
Long Lin ◽  
Linwei Yao ◽  
Shaofei Li ◽  
Zhengguang Shi ◽  
Kun Xie ◽  
...  

AbstractFinding the active sites of suitable metal oxides is a key prerequisite for detecting CH$$_4$$ 4 . The purpose of the paper is to investigate the adsorption of CH$$_4$$ 4 on intrinsic and oxygen-vacancies CuO (111) and (110) surfaces using density functional theory calculations. The results show that CH$$_4$$ 4 has a strong adsorption energy of −0.370 to 0.391 eV at all site on the CuO (110) surface. The adsorption capacity of CH$$_4$$ 4 on CuO (111) surface is weak, ranging from −0.156 to −0.325 eV. In the surface containing oxygen vacancies, the adsorption capacity of CuO surface to CH$$_4$$ 4 is significantly stronger than that of intrinsic CuO surface. The results indicate that CuO (110) has strong adsorption and charge transfer capacity for CH$$_4$$ 4 , which may provide experimental guidance.


Author(s):  
Pei Zhao ◽  
Bundet Boekfa ◽  
Ken-ichi Shimizu ◽  
Masaru Ogura ◽  
Masahiro Ehara

Density functional theory calculations have been applied to study the selectivity caused by the cage size during the selective catalytic reduction of NO by NH3 over the Cu-exchanged zeolites with cha, gme, and aft cages.


Sign in / Sign up

Export Citation Format

Share Document