scholarly journals Recent Progress in Atomic-Level Understanding of Cu/SSZ-13 Selective Catalytic Reduction Catalysts

Catalysts ◽  
2018 ◽  
Vol 8 (4) ◽  
pp. 140 ◽  
Author(s):  
◽  

Cu/SSZ-13 Selective Catalytic Reduction (SCR) catalysts have been extensively studied for the past five-plus years. New and exciting fundamental and applied science has appeared in the literature quite frequently over this time. In this short review, a few topics specifically focused on a molecular-level understanding of this catalyst are summarized: (1) The nature of the active sites and, in particular, their transformations under varying reaction conditions that include dehydration, the presence of the various SCR reactants and hydrothermal aging; (2) Discussions of standard and fast SCR reaction mechanisms. Considerable progress has been made, especially in the last couple of years, on standard SCR mechanisms. In contrast, mechanisms for fast SCR are much less understood. Possible reaction paths are hypothesized for this latter case to stimulate further investigations; (3) Discussions of rational catalyst design based on new knowledge obtained regarding catalyst stability, overall catalytic performance and mechanistic catalytic chemistry.

Catalysts ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 1324
Author(s):  
Feng Gao

Cu-exchanged small-pore zeolites have been extensively studied in the past decade as state-of-the-art selective catalytic reduction (SCR) catalysts for diesel engine exhaust NOx abatement for the transportation industry. During this time, Fe-exchanged small-pore zeolites, e.g., Fe/SSZ-13, Fe/SAPO-34, Fe/SSZ-39 and high-silica Fe/LTA, have also been investigated but much less extensively. In comparison to their Cu-exchanged counterparts, such Fe/zeolite catalysts display inferior low-temperature activities, but improved stability and high-temperature SCR selectivities. Such characteristics entitle these catalysts to be considered as key components of highly efficient emission control systems to improve the overall catalyst performance. In this short review, recent studies on Fe-exchanged small-pore zeolite SCR catalysts are summarized, including (1) the synthesis of small-pore Fe/zeolites; (2) nature of the SCR active Fe species in these catalysts as determined by experimental and theoretical approaches, including Fe species transformation during hydrothermal aging; (3) SCR reactions and structure-function correlations; and (4) a few aspects on industrial applications.


2019 ◽  
Vol 4 (6) ◽  
pp. 1050-1058 ◽  
Author(s):  
Taekyung Ryu ◽  
Yonjoo Kang ◽  
In-Sik Nam ◽  
Suk Bong Hong

Iron-exchanged high-silica LTA zeolites exhibit high activity for selective catalytic reduction of NOx by NH3, even after hydrothermal aging at 900 °C.


Author(s):  
Nimrod Kapas ◽  
Tariq Shamim ◽  
Paul Laing

This paper presents a computational investigation of the effect of mass transfer on the performance of selective catalytic reduction (SCR) catalysts, which are employed to reduce NOx emissions from diesel engines. The paper employs a single-channel based, one-dimensional, isothermal model. The heterogeneous surface chemistry is modeled by considering standard and fast SCR mechanisms, and the mass transfer rate is described by using a one-dimensional film model and dimensionless Sherwood (Sh) number. The paper investigates the effect of Sh numbers on the catalyst conversion performance at various temperatures and space velocities. The results show that the effect of the Sh number on the SCR catalyst performance is temperature dependent and is more pronounced at high space velocities. In general, higher Sh numbers lead to increased conversion efficiencies.


Nanomaterials ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1452
Author(s):  
Min Seong Lee ◽  
Sun-I Kim ◽  
Myeung-jin Lee ◽  
Bora Ye ◽  
Taehyo Kim ◽  
...  

In this study, we synthesized V2O5-WO3/TiO2 catalysts with different crystallinities via one-sided and isotropic heating methods. We then investigated the effects of the catalysts’ crystallinity on their acidity, surface species, and catalytic performance through various analysis techniques and a fixed-bed reactor experiment. The isotropic heating method produced crystalline V2O5 and WO3, increasing the availability of both Brønsted and Lewis acid sites, while the one-sided method produced amorphous V2O5 and WO3. The crystalline structure of the two species significantly enhanced NO2 formation, causing more rapid selective catalytic reduction (SCR) reactions and greater catalyst reducibility for NOX decomposition. This improved NOX removal efficiency and N2 selectivity for a wider temperature range of 200 °C–450 °C. Additionally, the synthesized, crystalline catalysts exhibited good resistance to SO2, which is common in industrial flue gases. Through the results reported herein, this study may contribute to future studies on SCR catalysts and other catalyst systems.


2021 ◽  
Author(s):  
Yulong Shan ◽  
Jinpeng Du ◽  
Yan Zhang ◽  
Wenpo Shan ◽  
Xiaoyan Shi ◽  
...  

Abstract Zeolites, as efficient and stable catalysts, are widely used in the environmental catalysis field. Typically, Cu-SSZ-13 with small-pore structure shows excellent catalytic activity for selective catalytic reduction of NOx with ammonia (NH3-SCR) as well as high hydrothermal stability. This review summarizes major advances in Cu-SSZ-13 applied to the NH3-SCR reaction, including the state of copper species, standard and fast SCR reaction mechanism, hydrothermal deactivation mechanism, poisoning resistance, and synthetic methodology. The review gives a valuable summary of new insights on the matching between SCR catalyst design principles and the characteristics of Cu2+-exchanged zeolitic catalysts, highlighting the significant opportunity presented by zeolite-based catalysts. Principles for designing zeolites with excellent NH3-SCR performance and hydrothermal stability are proposed. On the basis of these principles, more hydrothermally stable Cu-AEI and Cu-LTA zeolites are elaborated as well as other alternative zeolites applied to NH3-SCR. Finally, we call attention to the challenges facing Cu-based small-pore zeolites that still need to be addressed.


Catalysts ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 783
Author(s):  
Shuai Han ◽  
Qing Ye ◽  
Qi Gao ◽  
Hongxing Dai

The Ce-Cu-SAPO-18 catalysts were prepared using the ion exchange method. The impact of sulfur dioxide on catalytic performance of Ce-Cu-SAPO-18 for the selective catalytic reduction (SCR) of NO with NH3 was examined. Detailed characterization of the fresh and sulfur-poisoning Cu-SAPO-18 and Ce-Cu-SAPO-18 samples was conducted. XRD and BET results show that SO2 treatment of the Ce-doped Cu-SAPO-18 (Ce-Cu-SAPO-18-S) sample did not induce a remarkable change in structure, as compared with that of the fresh counterpart. According to in situ DRIFT, H2-TPR, SEM, and EDS results, it is found that the sulfation species attached preferentially to the cerium species, rather than the isolated Cu2+ species. In particular, the TG/DSC results confirm that the sulfate species on the Ce-Cu-SAPO-18-S sample was easier to decompose than that on the Cu-SAPO-18-S sample. The catalytic active sites of Ce-Cu-SAPO-18 were less influenced after SO2 treatment, as demonstrated by the TPR and XPS results. All of the above results show that the Ce-Cu-SAPO-18 sample exhibited better sulfur-resistant performance than the Cu-SAPO-18 sample.


Catalysts ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 283
Author(s):  
Oxana Kholdeeva ◽  
Nataliya Maksimchuk

In recent years, metal–organic frameworks (MOFs) have received increasing attention as selective oxidation catalysts and supports for their construction. In this short review paper, we survey recent findings concerning use of MOFs in heterogeneous liquid-phase selective oxidation catalysis with the green oxidant–aqueous hydrogen peroxide. MOFs having outstanding thermal and chemical stability, such as Cr(III)-based MIL-101, Ti(IV)-based MIL-125, Zr(IV)-based UiO-66(67), Zn(II)-based ZIF-8, and some others, will be in the main focus of this work. The effects of the metal nature and MOF structure on catalytic activity and oxidation selectivity are analyzed and the mechanisms of hydrogen peroxide activation are discussed. In some cases, we also make an attempt to analyze relationships between liquid-phase adsorption properties of MOFs and peculiarities of their catalytic performance. Attempts of using MOFs as supports for construction of single-site catalysts through their modification with heterometals will be also addressed in relation to the use of such catalysts for activation of H2O2. Special attention is given to the critical issues of catalyst stability and reusability. The scope and limitations of MOF catalysts in H2O2-based selective oxidation are discussed.


Sign in / Sign up

Export Citation Format

Share Document