scholarly journals Fe-Exchanged Small-Pore Zeolites as Ammonia Selective Catalytic Reduction (NH3-SCR) Catalysts

Catalysts ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 1324
Author(s):  
Feng Gao

Cu-exchanged small-pore zeolites have been extensively studied in the past decade as state-of-the-art selective catalytic reduction (SCR) catalysts for diesel engine exhaust NOx abatement for the transportation industry. During this time, Fe-exchanged small-pore zeolites, e.g., Fe/SSZ-13, Fe/SAPO-34, Fe/SSZ-39 and high-silica Fe/LTA, have also been investigated but much less extensively. In comparison to their Cu-exchanged counterparts, such Fe/zeolite catalysts display inferior low-temperature activities, but improved stability and high-temperature SCR selectivities. Such characteristics entitle these catalysts to be considered as key components of highly efficient emission control systems to improve the overall catalyst performance. In this short review, recent studies on Fe-exchanged small-pore zeolite SCR catalysts are summarized, including (1) the synthesis of small-pore Fe/zeolites; (2) nature of the SCR active Fe species in these catalysts as determined by experimental and theoretical approaches, including Fe species transformation during hydrothermal aging; (3) SCR reactions and structure-function correlations; and (4) a few aspects on industrial applications.

Catalysts ◽  
2018 ◽  
Vol 8 (4) ◽  
pp. 140 ◽  
Author(s):  
◽  

Cu/SSZ-13 Selective Catalytic Reduction (SCR) catalysts have been extensively studied for the past five-plus years. New and exciting fundamental and applied science has appeared in the literature quite frequently over this time. In this short review, a few topics specifically focused on a molecular-level understanding of this catalyst are summarized: (1) The nature of the active sites and, in particular, their transformations under varying reaction conditions that include dehydration, the presence of the various SCR reactants and hydrothermal aging; (2) Discussions of standard and fast SCR reaction mechanisms. Considerable progress has been made, especially in the last couple of years, on standard SCR mechanisms. In contrast, mechanisms for fast SCR are much less understood. Possible reaction paths are hypothesized for this latter case to stimulate further investigations; (3) Discussions of rational catalyst design based on new knowledge obtained regarding catalyst stability, overall catalytic performance and mechanistic catalytic chemistry.


2019 ◽  
Vol 4 (6) ◽  
pp. 1050-1058 ◽  
Author(s):  
Taekyung Ryu ◽  
Yonjoo Kang ◽  
In-Sik Nam ◽  
Suk Bong Hong

Iron-exchanged high-silica LTA zeolites exhibit high activity for selective catalytic reduction of NOx by NH3, even after hydrothermal aging at 900 °C.


2017 ◽  
Vol 2 (2) ◽  
pp. 168-179 ◽  
Author(s):  
Jonatan D. Albarracin-Caballero ◽  
Ishant Khurana ◽  
John R. Di Iorio ◽  
Arthur J. Shih ◽  
Joel E. Schmidt ◽  
...  

Cu in aged zeolites changes structure during SCR.


Author(s):  
Dang Van Long ◽  
Le Thanh Son ◽  
Pham Dinh Trong

Abstract: Since NOx emission requirements from stationary and mobile sources are more strictly regulated in the United States, Europe, and other countries; researchers have conducted many studies to improve the performance of selective catalytic reduction (SCR) catalysts to meet more and more stringent emission standards. Herein, we reported the synthesis of small pore zeolite (Cu)-SSZ-13 using N,N,N-dimethylethylcyclohexylammonium as the structure directing agent. The catalytic activity of the fresh and hydrothermal aged copper exchanged supported on SSZ-13 catalyst was investigated in the SCR of NOx using NH3 as a reductant. Cu-SSZ-13 possessing a high SCR performance (NOx conversion reached approximately 100% at 250oC), and high hydrothermal stability in combination with an easy synthesis route is considered to be a potential catalyst for SCR application. Keywords: Zeolite, SSZ-13, synthesis, SCR, NOx.


2015 ◽  
Vol 5 (9) ◽  
pp. 4280-4288 ◽  
Author(s):  
Wenpo Shan ◽  
Hua Song

This review presents recent studies on low-temperature NH3-SCR catalysts, particularly Mn-based oxides, V2O5/AC, and Cu-based small pore zeolites.


Author(s):  
Tae Joong Wang ◽  
In Hyuk Im

Ammonia/urea selective catalytic reduction is an efficient technology to control NOx emission from diesel engines. One of its critical challenges is the performance degradation of selective catalytic reduction catalysts due to the hydrothermal aging experienced in real-world operations during the lifetime. In this study, hydrothermal aging effects on the reduction of ammonia adsorption capacity over a commercial Cu-zeolite selective catalytic reduction catalyst were investigated under actual engine exhaust conditions. Ammonia adsorption site densities of the selective catalytic reduction catalysts aged at two different temperatures of 750°C and 850°C for 25 h with 10% H2O were experimentally measured and compared to that of fresh catalyst on a dynamometer test bench with a heavy-duty diesel engine. The test results revealed that hydrothermal aging significantly decreased the ammonia adsorption capacity of the current commercial Cu-zeolite selective catalytic reduction catalyst. Hydrothermal treatment at 750°C reduced the ammonia adsorption site to 62.5% level of that of fresh catalyst, while hydrothermal treatment at 850°C lowered the adsorption site to 37.0% level of that of fresh catalyst. Also, in this study, numerical simulation and kinetic analysis were carried out to quantify the impact of hydrothermal aging on the reduction of ammonia adsorption capacity by introducing an aging coefficient. The kinetic parameter calibrations based on actual diesel engine tests with a commercial monolith Cu-zeolite selective catalytic reduction catalyst provided a highly realistic kinetic parameter set of ammonia adsorption/desorption and enabled a mathematical description of hydrothermal aging effect.


RSC Advances ◽  
2017 ◽  
Vol 7 (42) ◽  
pp. 26226-26242 ◽  
Author(s):  
Shengen Zhang ◽  
Bolin Zhang ◽  
Bo Liu ◽  
Shuailing Sun

The reactions over Mn-containing selective catalytic reduction (SCR) catalysts.


Sign in / Sign up

Export Citation Format

Share Document