scholarly journals Influence of Sulfur-Containing Sodium Salt Poisoned V2O5–WO3/TiO2 Catalysts on SO2–SO3 Conversion and NO Removal

Catalysts ◽  
2018 ◽  
Vol 8 (11) ◽  
pp. 541 ◽  
Author(s):  
Haiping Xiao ◽  
Chaozong Dou ◽  
Hao Shi ◽  
Jinlin Ge ◽  
Li Cai

A series of poisoned catalysts with various forms and contents of sodium salts (Na2SO4 and Na2S2O7) were prepared using the wet impregnation method. The influence of sodium salts poisoned catalysts on SO2 oxidation and NO reduction was investigated. The chemical and physical features of the catalysts were characterized via NH3-temperature programmed desorption (NH3-TPD), H2-temperature programmed reduction (H2-TPR), X-ray photoelectron spectroscopy (XPS), Brunauer–Emmett–Teller (BET), X-ray diffraction (XRD), and Fourier Transform Infrared Spectroscopy (FT-IR). The results showed that sodium salts poisoned catalysts led to a decrease in the denitration efficiency. The 3.6% Na2SO4 poisoned catalyst was the most severely deactivated with denitration efficiency of only 50.97% at 350 °C. The introduction of SO42− and S2O72− created new Brønsted acid sites, which facilitated the adsorption of NH3 and NO reduction. The sodium salts poisoned catalysts significantly increased the conversion of SO2–SO3. 3.6%Na2S2O7 poisoned catalyst had the strongest effect on SO2 oxidation and the catalyst achieved a maximum SO2–SO3-conversion of 1.44% at 410 °C. Characterization results showed sodium salts poisoned catalysts consumed the active ingredient and lowered the V4+/V5+ ratio, which suppressed catalytic performance. However, they increased the content of chemically adsorbed oxygen and the strength of V5+=O bonds, which promoted SO2 oxidation.

2020 ◽  
Vol 218 ◽  
pp. 03032
Author(s):  
Chenxi Li ◽  
Fanwei Meng ◽  
Qing Ye

A series of xCe-Fe/ZSM-5 (x = 0, 0.25, 0.5 wt%) samples were prepared by the impregnation method, and the catalytic activity was evaluated by the selective catalytic reduction of NOx with ammonia (NH3-SCR). The physicochemical properties of prepared samples were characterized by various techniques such as X-ray diffraction (XRD), Brunner-Emmet-Teller (BET) measurement, hydrogen temperatureprogrammed reduction (H2-TPR), X-ray photoelectron spectroscopy (XPS), ammonia temperatureprogrammed desorption (NH3-TPD) and in situ diffuse reflectance infrared Fourier transform spectroscopy (in situ DRIFTS). XRD and BET results demonstrated that Ce and Fe species were uniform dispersed on the surface of the ZSM-5 zeolite and the micropore structure of ZSM-5 was still maintained. H2-TPR analysis indicated that the doping of Ce created more isolated Ce4+ and Fe3+ on the surface of catalysts, and the abundant Ce4+ and Fe3+ could enhance the reduction ability of catalysts. XPS analysis suggested that the doping of Ce could generate more oxygen vacancies, thereby increasing the number of chemisorption oxygen. According to the in-situ DRIFTS and NH3-TPD results, Ce species provided more acidic sites, which is beneficial to the NH3 adsorption ability of ZSM-5 zeolite. Additionally, the abundant chemisorption oxygen, medium and strong Brønsted acid sites, excellent NH3 adsorption ability and outstanding reduction property are beneficial to the NH3-SCR reaction. Among all prepared samples, the 0.25Ce-Fe/ZSM-5 sample possessed the widest reaction temperature window and the best catalytic performance (NO conversion over 98% at 350-450 °C), which was associated with the abundant acid sites and remarkable adsorption ability of NH3, outstanding redox ability and abundant chemisorption oxygen after the doping of Ce.


Catalysts ◽  
2019 ◽  
Vol 9 (3) ◽  
pp. 220 ◽  
Author(s):  
Ruliang Ning ◽  
Li Chen ◽  
Erwei Li ◽  
Xiaolong Liu ◽  
Tingyu Zhu

V2O5-WO3/TiO2 catalysts with different V2O5 and WO3 loadings were prepared by the impregnation method. H2O and SO2 resistance of the catalysts under high H2O concentration (30 vol.%) was studied. Influence of various basic metal oxides, such as Al2O3, CaO, Na2O, and K2O on the catalytic performance was studied and compared. It is revealed that the inhibitory effect is in the sequence of K > Na > Ca > Al, which is consistent with their alkalinity. X-ray diffraction (XRD), N2 physisorption (BET), temperature-programmed desorption of NH3 (NH3-TPD), H2-temperature programmed reduction (H2-TPR), X-ray photoelectron spectroscopy (XPS) and diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) were carried out, and the results were well-correlated with the catalytic studies.


Catalysts ◽  
2019 ◽  
Vol 9 (2) ◽  
pp. 175 ◽  
Author(s):  
Yan Gao ◽  
Tao Luan ◽  
Shitao Zhang ◽  
Wenchao Jiang ◽  
Wenchen Feng ◽  
...  

The nanocatalysts of Mn−Co/TiO2 and Mn−Fe/TiO2 were synthesized by hydrothermal method and comprehensively compared from nanostructures, catalytic performance, kinetics, and thermodynamics. The physicochemical properties of the nanocatalysts were analyzed by N2 adsorption, transmission electron microscope (TEM), X-ray diffraction (XRD), H2-temperature-programmed reduction (TPR), NH3-temperature-programmed desorption (TPD), and X-ray photoelectron spectroscopy (XPS). Based on the multiple characterizations performed on Mn−Co/TiO2 and Mn−Fe/TiO2 nanocatalysts, it can be confirmed that the catalytic properties were decidedly dependent on the phase compositions of the nanocatalysts. The Mn−Co/TiO2 sample presented superior structure characteristics than Mn−Fe/TiO2, with the increased surface area, the promoted active components distribution, the diminished crystallinity, and the reduced nanoparticle size. Meanwhile, the Mn4+/Mnn+ ratios in the Mn−Co/TiO2 nanocatalyst were higher than Mn−Fe/TiO2, which further confirmed the better oxidation ability and the larger amount of Lewis acid sites and Bronsted acid sites on the sample surface. Compared to Mn−Fe/TiO2 nanocatalyst, Mn−Co/TiO2 nanocatalyst displayed the preferable catalytic property with higher catalytic activity and stronger selectivity in the temperature range of 75–250 °C. The results of mechanism and kinetic study showed that both Eley-Rideal mechanism and Langmuir-Hinshelwood mechanism reactions contributed to selective catalytic reduction of NO with NH3 (NH3-SCR) over Mn−Fe/TiO2 and Mn−Co/TiO2 nanocatalysts. In this test condition, the NO conversion rate of Mn−Co/TiO2 nanocatalyst was always higher than that of Mn−Fe/TiO2. Furthermore, comparing the reaction between doping transition metal oxides and NH3, the order of temperature−Gibbs free energy under the same reaction temperature is as follows: Co3O4 < CoO < Fe2O3 < Fe3O4, which was exactly consistent with nanostructure characterization and NH3-SCR performance. Meanwhile, the activity difference of MnOx exhibited in reducibility properties and Ellingham Diagrams manifested the promotion effects of cobalt and iron dopings. Generally, it might offer a theoretical method to select superior doping metal oxides for NO conversion by comprehensive comparing the catalytic performance with the insight from nanostructure, catalytic performance, reaction kinetics, and thermodynamics.


Catalysts ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 553
Author(s):  
Mansurbek Urol ugli Abdullaev ◽  
Sungjune Lee ◽  
Tae-Wan Kim ◽  
Chul-Ung Kim

Among the zeolitic catalysts for the ethylene-to-propylene (ETP) reaction, the SSZ-13 zeolite shows the highest catalytic activity based on both its suitable pore architecture and tunable acidity. In this study, in order to improve the propylene selectivity further, the surface of the SSZ-13 zeolite was modified with various amounts of tungsten oxide ranging from 1 wt% to 15 wt% via a simple incipient wetness impregnation method. The prepared catalysts were characterized with several analysis techniques, specifically, powder X-ray diffraction (PXRD), Raman spectroscopy, temperature-programmed reduction of hydrogen (H2-TPR), temperature-programmed desorption of ammonia (NH3-TPD), inductively coupled plasma-atomic emission spectroscopy (ICP-AES), and N2 sorption, and their catalytic activities were investigated in a fixed-bed reactor system. The tungsten oxide-modified SSZ-13 catalysts demonstrated significantly improved propylene selectivity and yield compared to the parent H-SSZ-13 catalyst. For the tungsten oxide loading, 10 wt% loading showed the highest propylene yield of 64.9 wt%, which was 6.5 wt% higher than the pristine H-SSZ-13 catalyst. This can be related to not only the milder and decreased strong acid sites but also the diffusion restriction of bulky byproducts, as supported by scanning transmission electron microscopy-energy dispersive X-ray spectroscopy (STEM-EDS) observation.


2019 ◽  
Vol 79 (9) ◽  
pp. 1675-1684 ◽  
Author(s):  
Guang Xian ◽  
Nan Zhang ◽  
Guangming Zhang ◽  
Yi Zhang ◽  
Zhiguo Zou

Abstract FeNiCeOx was firstly prepared by ultrasonic impregnation method and used to remove diclofenac in a Fenton-like system. The catalytic activity was improved successfully by doping Ni into FeCeOx. The diclofenac removal efficiency reached 97.9% after 30 min reaction. The surface morphology and properties of FeNiCeOx were characterized by Brunauer-Emmett-Teller (BET), scanning electron microscopy (SEM), X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM), Raman and X-ray photoelectron spectroscopy (XPS) analyses. FeNiCeOx in this paper had larger specific surface area than those prepared by other methods, which was attributed to the cavitation effect and hot-spot effect during the ultrasonic synthesis process. Low crystallinity of Fe2O3 and NiO showed by characterization could lead to high interaction of Fe and Ni ions with support of CeO2. They substituted Ce in CeO2, caused lattice contraction and formed more oxygen vacancies, which favoured the catalytic reaction. Meanwhile, Fe and Ce ions both had redox cycles of Fe3+/Fe2+ and Ce4+/Ce3+, which facilitated the electron transfer in the reaction. The synergistic effect among Fe, Ni and Ce might lead to better catalytic performance of FeNiCeOx than any binary metal oxides constituted from the above three elements. Finally, the potential mechanism of diclofenac removal in FeNiCeOx-H2O2 system is proposed.


Crystals ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 530 ◽  
Author(s):  
Chaoqun Bian ◽  
Xiao Wang ◽  
Lan Yu ◽  
Fen Zhang ◽  
Jie Zhang ◽  
...  

The incorporation of metal heteroatoms into zeolites is an effective modification strategy for enhancing their catalytic performance. Herein, for the first time we report a generalized methodology for inserting metal heteroatoms (such as Sn, Fe, Zn, and Co) into the layered zeolite precursor RUB-36 via interlayer expansion by using the corresponding metal acetylacetate salt. Through this generalized methodology, Sn-JHP-1, Fe-JHP-1, Zn-JHP-1 and Co-JHP-1 zeolites could be successfully prepared by the reaction of RUB-36 and corresponding metal acetylacetate salt at 180 °C for 24 h in the presence of HCl solution. As a typical example, Sn-JHP-1 and calcined Sn-JHP-1 (Sn-JHP-2) zeolite is well characterized by the X-ray diffraction (XRD), diffuse reflectance ultraviolet-visible (UV-Vis), inductively coupled plasma (ICP), N2 sorption, temperature-programmed-desorption of ammonia (NH3-TPD) and X-ray photoelectron spectroscopy (XPS) techniques, which confirm the expansion of adjacent interlayers and thus the incorporation of isolated Sn sites within the zeolite structure. Notably, the obtained Sn-JHP-2 zeolite sample shows enhanced catalytic performance in the conversion of glucose to levulinic acid (LA) reaction.


2017 ◽  
Vol 23 (1) ◽  
pp. 49-56 ◽  
Author(s):  
Yajing Zhang ◽  
Yu Zhang ◽  
Fu Ding ◽  
Kangjun Wang ◽  
Wang Xiaolei ◽  
...  

A series of La2O3-modified CuO-ZnO-ZrO2/HZSM-5 catalysts were prepared by an oxalate co-precipitation method. The catalysts were fully characterized by X-ray diffraction (XRD), N2 adsorption-desorption, hydrogen temperature pro-grammed reduction (H2-TPR), ammonia temperature programmed desorption (NH3-TPD), and X-ray photoelectron spectroscopy (XPS) techniques. The effect of the La2O3 content on the structure and performance of the catalysts was thoroughly investigated. The catalysts were evaluated for the direct synthesis of dimethyl ether (DME) from CO2 hydrogenation. The results displayed that La2O3 addition enhanced catalytic performance, and the maximal CO2 conversion (34.3%) and DME selectivity (57.3%) were obtained over the catalyst with 1% La2O3, which due to the smaller size of Cu species and a larger ratio of Cu+/Cu.


Catalysts ◽  
2019 ◽  
Vol 9 (6) ◽  
pp. 497 ◽  
Author(s):  
Renata Sadek ◽  
Karolina A. Chalupka ◽  
Pawel Mierczynski ◽  
Jacek Rynkowski ◽  
Jacek Gurgul ◽  
...  

Co-containing Beta zeolite catalysts prepared by a wet impregnation and two-step postsynthesis method were investigated. The activity of the catalysts was examined in Fischer-Tropsch synthesis (FTS), performed at 30 atm and 260 °C. The physicochemical properties of all systems were investigated by means of X-ray diffraction (XRD), in situ XRD, temperature programmed desorption of ammonia (NH3-TPD), X-ray Photoelectron Spectroscopy (XPS), temperature programmed reduction of hydrogen (TPR-H2), and transmission electron microscopy (TEM). Among the studied catalysts, the best results were obtained for the samples prepared by a two-step postsynthesis method, which achieved CO conversion of about 74%, and selectivity to liquid products of about 86%. The distribution of liquid products for Red-Me-Co20Beta was more diversified than for Red-Mi-Co20Beta. It was observed that significant influence of the zeolite dealumination of mesoporous zeolite on the catalytic performance in FTS. In contrast, for microporous catalysts, the dealumination did not play such a significant role and the relatively high activity is observed for both not dealuminated and dealuminated catalysts. The main liquid products of FTS on both mesoporous and microporous catalysts were C10-C14 isoalkanes and n-alkanes. The iso-/n-alkanes ratio for dealuminated zeolite catalysts was three times higher than that for not dealuminated ones, and was related to the presence of different kind of acidic sites in both zeolite catalysts.


Catalysts ◽  
2019 ◽  
Vol 9 (10) ◽  
pp. 847 ◽  
Author(s):  
Seyed Moeini ◽  
Chiara Battocchio ◽  
Stefano Casciardi ◽  
Igor Luisetto ◽  
Paolo Lupattelli ◽  
...  

In the present study, the catalytic activity of palladium oxide (PdOx) supported on ceria nanorods (CeO2-NR) for aerobic selective oxidation of benzyl alcohol (BnOH) to benzaldehyde (PhCHO) was evaluated. The CeO2-NR was synthesized hydrothermally and the Pd(NO3)2 was deposited by a wet impregnation method, followed by calcination to acquire PdOx/CeO2-NR. The catalysts were characterized by X-ray diffraction (XRD), temperature programmed reduction (TPR), transmission electron microscopy (TEM), Brunauer–Emmet–Teller (BET) surface area analysis, and X-ray photoelectron spectroscopy (XPS). In addition, the TPR-reduced PdOx/CeO2-NR (PdOx/CeO2-NR-Red) was studied by XRD, BET, and XPS. Characterizations showed the formation of CeO2-NR with (111) exposed plane and relatively high BET surface area. PdOx (x > 1) was detected to be the major oxide species on the PdOx/CeO2-NR. The activities of the catalysts in BnOH oxidation were evaluated using air, as an environmentally friendly oxidant, and various solvents. Effects of temperature, solvent nature and palladium oxidation state were investigated. The PdOx/CeO2-NR showed remarkable activity when protic solvents were utilized. The best result was achieved using PdOx/CeO2-NR and boiling ethanol as solvent, leading to 93% BnOH conversion and 96% selectivity toward PhCHO. A mechanistic hypothesis for BnOH oxidation with PdOx/CeO2-NR in ethanol is presented.


Catalysts ◽  
2018 ◽  
Vol 8 (9) ◽  
pp. 380 ◽  
Author(s):  
Pawel Mierczynski ◽  
Agnieszka Mierczynska ◽  
Radoslaw Ciesielski ◽  
Magdalena Mosinska ◽  
Magdalena Nowosielska ◽  
...  

Herein, we report monometallic Ni and bimetallic Pd–Ni catalysts supported on CeO2–Al2O3 binary oxide which are highly active and selective in oxy-steam reforming of methanol (OSRM). Monometallic and bimetallic supported catalysts were prepared by an impregnation method. The physicochemical properties of the catalytic systems were investigated using a range of methods such as: Brunauer–Emmett–Teller (BET), X-ray Powder Diffraction (XRD), Temperature-programmed reduction (TPR–H2), Temperature-programmed desorption (TPD–NH3), X-ray photoelectron spectroscopy (XPS) and Scanning Electron Microscope equipped with an energy dispersive spectrometer (SEM–EDS). We demonstrate that the addition of palladium facilitates the reduction of nickel catalysts. The activity tests performed for all catalysts confirmed the promotion effect of palladium on the catalytic activity of nickel catalyst and their selectivity towards hydrogen production. Both nickel and bimetallic palladium–nickel supported catalysts showed excellent stability during the reaction. The reported catalytic systems are valuable to make advances in the field of fuel cell technology.


Sign in / Sign up

Export Citation Format

Share Document