scholarly journals H2O and/or SO2 Tolerance of Cu-Mn/SAPO-34 Catalyst for NO Reduction with NH3 at Low Temperature

Catalysts ◽  
2019 ◽  
Vol 9 (3) ◽  
pp. 289 ◽  
Author(s):  
Guofu Liu ◽  
Wenjie Zhang ◽  
Pengfei He ◽  
Shipian Guan ◽  
Bing Yuan ◽  
...  

A series of molecular sieve catalysts (Cu–Mn/SAPO-34) with different loadings of Cu and Mn components were prepared by the impregnation method. The deNOx activity of the catalyst was investigated during the selective catalytic reduction (SCR) of NO with NH3 in the temperature range of 120 °C to 330 °C, including the effects of H2O vapors and SO2. In order to understand the poisoning mechanism by the injection of H2O and/or SO2 into the feeding gas, the characteristics of the fresh and spent catalyst were identified by means of Brunner−Emmet−Teller (BET), X-ray Diffraction (XRD), Scanning Electronic Microscopy (SEM) and Thermal Gravity- Differential Thermal Gravity (TG-DTG). The conversion of NO by the catalyst can achieve at 72% under the reaction temperature of 120 °C, while the value reached more than 90% under the temperature between 180 °C and 330 °C. The deNOx activity test shows that the H2O has a reversible negative effect on NO conversion, which is mainly due to the competitive adsorption of H2O and NH3 on Lewis acid sites. When the reaction temperature increases to 300 °C, the poisoning effect of H2O can be negligible. The poisoning effect of SO2 on deNOx activity is dependent on the reaction temperature. At low temperature, the poisoning effect of SO2 is permanent with no recovery of deNOx activity after the elimination of SO2. The formation of (NH4)2SO4, which results in the plug of active sites and a decrease of surface area, and the competitive adsorption of SO2 and NO should be responsible for the loss of deNOx activity over Cu/SAPO-34.

2014 ◽  
Vol 2014 ◽  
pp. 1-6
Author(s):  
Liu Yang ◽  
Yue Tan ◽  
Zhongyi Sheng ◽  
Aiyi Zhou

Sodium carbonate (Na2CO3), sodium nitrate (NaNO3), and sodium chloride (NaCl) were chosen as the precursors to prepare the Na salts deposited Mn-Ce/TiO2catalysts through an impregnation method. The influence of Na on the performance of the Mn-Ce/TiO2catalyst for low-temperature selective catalytic reduction ofNOxby NH3was investigated. Experimental results showed that Na salts had negative effects on the activity of Mn-Ce/TiO2and the precursors of Na salts also affected the catalytic activity. The precursor Na2CO3had a greater impact on the catalytic activity, while NaNO3had minimal effect. The characterization results indicated that the significant changes in physical and chemical properties of Mn-Ce/TiO2were observed after Na was doped on the catalysts. The significant decreases in surface areas and NH3adsorption amounts were observed after Na was doped on the catalysts, which could be considered as the main reasons for the deactivation of Na deposited Mn-Ce/TiO2.


Catalysts ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 1375
Author(s):  
Jinpeng Du ◽  
Jingyi Wang ◽  
Xiaoyan Shi ◽  
Yulong Shan ◽  
Yan Zhang ◽  
...  

The effect of Mn impregnation on the NH3-SCR (selective catalytic reduction of NOx by NH3) activity of in situ synthesized Cu-SSZ-13 was investigated in this work. It was found that Mn addition could efficiently improve the low-temperature activity of Cu-SSZ-13. The optimal amount of Mn was 5 wt.%, and NOx conversion was improved by more than 20% over a temperature range of 120 °C to 150 °C. SEM (scanning electron microscopy), XRD (X-ray diffraction), N2 adsorption-desorption, H2-TPR (temperature programmed reduction of H2), NH3-TPD (temperature programmed desorption of NH3) and in situ DRIFTS (diffuse reflectance infrared Fourier transform spectroscopy) experiments were conducted to investigate the changes in the zeolite structure, active sites, acid sites and reaction mechanism. The impregnated MnOx species caused a decline in the crystallinity of Cu-SSZ-13 but markedly improved the redox ability. Nitrate and nitrite species were observed in the Mn-modified Cu-SSZ-13, and the formation of these species was thought to cause the observed increase in low-temperature NH3-SCR activity. The results show that the addition of Mn is a promising method for promoting the low-temperature catalytic activity of Cu-SSZ-13.


2013 ◽  
Vol 634-638 ◽  
pp. 526-530
Author(s):  
Chun Xiang Geng ◽  
Qian Qian Chai ◽  
Wei Yao ◽  
Chen Long Wang

Selective Catalytic Reduction (SCR) processes have been one of the most widely used denitration methods at present and the property of low tempreture catalyst becomes a hot research. The Mn-Ce/TiO2 catalyst was prepared by incipient impregnation method. The influence of load capacity, reaction temperature, O2 content, etc. on denitration were studied by a fixed bed catalyst reactor with ammonia gas. Results showed that catalyst with load capacity 18% performed high NO removal rate of 90% at conditions of reaction temperature 160°C, low space velocity, NH3/NO molar ratio 1: 1, O2 concentration 6%.


2017 ◽  
Vol 898 ◽  
pp. 1905-1915 ◽  
Author(s):  
Kai Qi ◽  
Jun Lin Xie ◽  
Feng Xiang Li ◽  
Feng He

The samples of MnOx/TiO2 catalysts supported on cordierite honeycomb ceramics were prepared by a sol-gel-impregnation method, and evaluated for low-temperature (353-473 K) selective catalytic reduction (SCR) of NOx with NH3. The influences of pretreatment on cordierite and catalyst dosage were investigated at first and optimized as follows: pickling for cordierite honeycomb ceramics with 1 mol/L HNO3 for 3 h prior to loading procedure as well as the catalyst dosage of 3-5 wt.%. The activity results indicated that there was an optimum working condition for MnOx/TiO2/cordierite catalysts: NH3/NO molar ratio=1.1, [O2]=3 vol.%, GHSV=5514 h-1, the highest activity of nearly 100% NO conversion could be obtained. As a comparison, the performances of commercialized vanadium-based honeycomb catalyst were also employed, which revealed the narrower scope of application of GHSV and the higher active temperature window. In conclusion, it turns out that the prepared MnOx/TiO2/cordierite catalysts are more applicable as a low-temperature SCR catalyst for NOx removal in a more complicated application environment.


Catalysts ◽  
2019 ◽  
Vol 9 (9) ◽  
pp. 724 ◽  
Author(s):  
Yan Cui ◽  
Leilei Xu ◽  
Mindong Chen ◽  
Chufei Lv ◽  
Xinbo Lian ◽  
...  

CuO-based catalysts are usually used for CO oxidation owing to their low cost and excellent catalytic activities. In this study, a series of metal oxide (La2O3, Fe2O3, PrO2, Sm2O3, and MnO2)-doped CuO-based catalysts with mesoporous Ce0.8Zr0.2O2 support were simply prepared by the incipient impregnation method and used directly as catalysts for CO catalytic oxidation. These mesoporous catalysts were systematically characterized by X-ray powder diffraction (XRD), N2 physisorption, transmission electron microscopy (TEM), energy-dispersed spectroscopy (EDS) mapping, X-ray photoelectron spectroscopy (XPS), and H2 temperature programmed reduction (H2-TPR). It was found that the CuO and the dopants were highly dispersed among the mesoporous framework via the incipient impregnation method, and the strong metal framework interaction had been formed. The effects of the types of the dopants and the loading amounts of the dopants on the low-temperature catalytic performances were carefully studied. It was concluded that doped transition metal oxides could regulate the oxygen mobility and reduction ability of catalysts, further improving the catalytic activity. It was also found that the high dispersion of rare earth metal oxides (PrO2, Sm2O3) was able to prevent the thermal sintering and aggregation of CuO-based catalysts during the process of calcination. In addition, their presence also evidently improved the reducibility and significantly reduced the particle size of the CuO active sites for CO oxidation. The results demonstrated that the 15CuO-3Fe2O3/M-Ce80Zr20 catalyst with 3 wt. % of Fe2O3 showed the best low-temperature catalytic activity toward CO oxidation. Overall, the present Fe2O3-doped CuO-based catalysts with mesoporous nanocrystalline Ce0.8Zr0.2O2 solid solution as support were considered a promising series of catalysts for low-temperature CO oxidation.


RSC Advances ◽  
2017 ◽  
Vol 7 (39) ◽  
pp. 24177-24187 ◽  
Author(s):  
Haidi Xu ◽  
Mengmeng Sun ◽  
Shuang Liu ◽  
Yuanshan Li ◽  
Jianli Wang ◽  
...  

The calcined temperature of the carrier obviously affected SCR activity of catalysts, WO3/Ce0.68Zr0.32O2-500 showed the best low-temperature NH3-SCR activity due to its more Lewis acid sites and stronger redox property.


2018 ◽  
Vol 148 (4) ◽  
pp. 1228-1235 ◽  
Author(s):  
Rui Wu ◽  
Ningqiang Zhang ◽  
Xiaojun Liu ◽  
Lingcong Li ◽  
Liyun Song ◽  
...  

Abstract Heteropolyacids and their salts have been effectively used in selective catalytic reduction because of the Keggin structure and extraordinarily strong acidity. Catalysts with and without the Keggin structure were synthesized to further investigate the effects of heteropolyoxometallate on low temperature NH3–SCR. XRD, BET, Raman, H2–TPR, NH3–TPD, FT-IR, and SO2–TPD techniques were used to characterize the physicochemical characteristics of the catalysts. Results indicate that catalysts with the Keggin structure had more surface Brönsted and Lewis acid sites, and these catalysts had significantly improved performances in the SCR reaction and in SO2 poisoning resistance. Graphical Abstract


Catalysts ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 345
Author(s):  
Jifa Miao ◽  
Xianfang Yi ◽  
Qingfa Su ◽  
Huirong Li ◽  
Jinsheng Chen ◽  
...  

The poisoning effect of single elements on commercial V2O5-WO3/TiO2 catalysts has been studied in the past decades. In this study, the combined effects of two multi-element systems (phosphorus-potassium and phosphorus-lead) on V2O5-WO3/TiO2 catalysts were studied by diverse characterizations. The results show that potassium and lead can result in the deactivation of catalysts to different degrees by reacting with active acid sites and reducing the amount of V5+. However, phosphorus displays slight negative influence on the NOx conversion of the catalyst due to the comprehensive effect of reducing V5+ amount and generating new acid sites. The samples poisoned by phosphorus–potassium and phosphorus–lead have higher NOx conversion than that by potassium or lead, because doped potassium or lead atoms may react with new acid sites generated by phosphate, which liberates more V–OH on the surface of catalysts and reduces the poisoning effects of potassium or lead on vanadium species and active oxygen species.


Catalysts ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 1391
Author(s):  
Yu Qiu ◽  
Chi Fan ◽  
Changcheng Sun ◽  
Hongchang Zhu ◽  
Wentian Yi ◽  
...  

To reveal the nature of SO2 poisoning over Cu-SSZ-13 catalyst under actual exhaust conditions, the catalyst was pretreated at 200 and 500 °C in a flow containing NH3, NO, O2, SO2, and H2O. Brunner−Emmet−Teller (BET), X-ray diffraction(XRD), thermo gravimetric analyzer (TGA), ultraviolet Raman spectroscopy (UV Raman), temperature-programmed reduction with H2 (H2-TPR), temperature-programmed desorption of NO+O2 (NO+O2-TPD), NH3-TPD, in situ diffuse reflectance infrared Fourier transform spectroscopy (in situ DRIFTS), and an activity test were utilized to monitor the changes of Cu-SSZ-13 before and after in situ SO2 poisoning. According to the characterization results, the types and generated amount of sulfated species were directly related to poisoning temperature. Three sulfate species, including (NH4)2SO4, CuSO4, and Al2(SO4)3, were found to form on CZ-S-200, while only the latter two sulfate species were observed over CZ-S-500. Furthermore, SO2 poisoning had a negative effect on low-temperature selective catalytic reduction (SCR) activity, which was mainly due to the sulfation of active sites, including Z2Cu, ZCuOH, and Si-O(H)-Al. In contrast, SO2 poisoning had a positive effect on high-temperature SCR activity, owing to the inhibition of the NH3 oxidation reaction. The above findings may be a useful guideline to design excellent SO2-resistant Cu-based zeolite catalysts.


Sign in / Sign up

Export Citation Format

Share Document