scholarly journals Bioproduction of Isoprenoids and Other Secondary Metabolites Using Methanotrophic Bacteria as an Alternative Microbial Cell Factory Option: Current Stage and Future Aspects

Catalysts ◽  
2019 ◽  
Vol 9 (11) ◽  
pp. 883 ◽  
Author(s):  
Young Chan Jeon ◽  
Anh Duc Nguyen ◽  
Eun Yeol Lee

Methane is a promising carbon feedstock for industrial biomanufacturing because of its low price and high abundance. Recent advances in metabolic engineering and systems biology in methanotrophs have made it possible to produce a variety of value-added compounds from methane, including secondary metabolites. Isoprenoids are one of the largest family of secondary metabolites and have many useful industrial applications. In this review, we highlight the current efforts invested to methanotrophs for the production of isoprenoids and other secondary metabolites, including riboflavin and ectoine. The future outlook for improving secondary metabolites production (especially of isoprenoids) using metabolic engineering of methanotrophs is also discussed.

2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Hyang-Mi Lee ◽  
Jun Ren ◽  
Myeong-Sang Yu ◽  
Hyunjoo Kim ◽  
Woo Young Kim ◽  
...  

Abstract Background As methane is 84 times more potent than carbon dioxide in exacerbating the greenhouse effect, there is an increasing interest in the utilization of methanotrophic bacteria that can convert harmful methane into various value-added compounds. A recently isolated methanotroph, Methylomonas sp. DH-1, is a promising biofactory platform because of its relatively fast growth. However, the lack of genetic engineering tools hampers its wide use in the bioindustry. Results Through three different approaches, we constructed a tunable promoter library comprising 33 promoters that can be used for the metabolic engineering of Methylomonas sp. DH-1. The library had an expression level of 0.24–410% when compared with the strength of the lac promoter. For practical application of the promoter library, we fine-tuned the expressions of cadA and cadB genes, required for cadaverine synthesis and export, respectively. The strain with PrpmB-cadA and PDnaA-cadB produced the highest cadaverine titre (18.12 ± 1.06 mg/L) in Methylomonas sp. DH-1, which was up to 2.8-fold higher than that obtained from a non-optimized strain. In addition, cell growth and lysine (a precursor of cadaverine) production assays suggested that gene expression optimization through transcription tuning can afford a balance between the growth and precursor supply. Conclusions The tunable promoter library provides standard and tunable components for gene expression, thereby facilitating the use of methanotrophs, specifically Methylomonas sp. DH-1, as a sustainable cell factory. Graphical Abstract


2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Zhenning Liu ◽  
Xue Zhang ◽  
Dengwei Lei ◽  
Bin Qiao ◽  
Guang-Rong Zhao

Abstract Background 3-Phenylpropanol with a pleasant odor is widely used in foods, beverages and cosmetics as a fragrance ingredient. It also acts as the precursor and reactant in pharmaceutical and chemical industries. Currently, petroleum-based manufacturing processes of 3-phenypropanol is environmentally unfriendly and unsustainable. In this study, we aim to engineer Escherichia coli as microbial cell factory for de novo production of 3-phenypropanol via retrobiosynthesis approach. Results Aided by in silico retrobiosynthesis analysis, we designed a novel 3-phenylpropanol biosynthetic pathway extending from l-phenylalanine and comprising the phenylalanine ammonia lyase (PAL), enoate reductase (ER), aryl carboxylic acid reductase (CAR) and phosphopantetheinyl transferase (PPTase). We screened the enzymes from plants and microorganisms and reconstructed the artificial pathway for conversion of 3-phenylpropanol from l-phenylalanine. Then we conducted chromosome engineering to increase the supply of precursor l-phenylalanine and combined the upstream l-phenylalanine pathway and downstream 3-phenylpropanol pathway. Finally, we regulated the metabolic pathway strength and optimized fermentation conditions. As a consequence, metabolically engineered E. coli strain produced 847.97 mg/L of 3-phenypropanol at 24 h using glucose-glycerol mixture as co-carbon source. Conclusions We successfully developed an artificial 3-phenylpropanol pathway based on retrobiosynthesis approach, and highest titer of 3-phenylpropanol was achieved in E. coli via systems metabolic engineering strategies including enzyme sources variety, chromosome engineering, metabolic strength balancing and fermentation optimization. This work provides an engineered strain with industrial potential for production of 3-phenylpropanol, and the strategies applied here could be practical for bioengineers to design and reconstruct the microbial cell factory for high valuable chemicals.


2019 ◽  
Vol 18 (1) ◽  
Author(s):  
Vijaydev Ganesan ◽  
Michael Spagnuolo ◽  
Ayushi Agrawal ◽  
Spencer Smith ◽  
Difeng Gao ◽  
...  

AbstractYarrowia lipolytica has emerged as a biomanufacturing platform for a variety of industrial applications. It has been demonstrated to be a robust cell factory for the production of renewable chemicals and enzymes for fuel, feed, oleochemical, nutraceutical and pharmaceutical applications. Metabolic engineering of this non-conventional yeast started through conventional molecular genetic engineering tools; however, recent advances in gene/genome editing systems, such as CRISPR–Cas9, transposons, and TALENs, has greatly expanded the applications of synthetic biology, metabolic engineering and functional genomics of Y. lipolytica. In this review we summarize the work to develop these tools and their demonstrated uses in engineering Y. lipolytica, discuss important subtleties and challenges to using these tools, and give our perspective on important gaps in gene/genome editing tools in Y. lipolytica.


2020 ◽  
Vol 8 (12) ◽  
pp. 1849
Author(s):  
Yujin Jeong ◽  
Sang-Hyeok Cho ◽  
Hookeun Lee ◽  
Hyung-Kyoon Choi ◽  
Dong-Myung Kim ◽  
...  

Cyanobacteria, given their ability to produce various secondary metabolites utilizing solar energy and carbon dioxide, are a potential platform for sustainable production of biochemicals. Until now, conventional metabolic engineering approaches have been applied to various cyanobacterial species for enhanced production of industrially valued compounds, including secondary metabolites and non-natural biochemicals. However, the shortage of understanding of cyanobacterial metabolic and regulatory networks for atmospheric carbon fixation to biochemical production and the lack of available engineering tools limit the potential of cyanobacteria for industrial applications. Recently, to overcome the limitations, synthetic biology tools and systems biology approaches such as genome-scale modeling based on diverse omics data have been applied to cyanobacteria. This review covers the synthetic and systems biology approaches for advanced metabolic engineering of cyanobacteria.


2019 ◽  
Vol 104 (1) ◽  
pp. 51-65 ◽  
Author(s):  
Ningzi Guan ◽  
Long Liu

AbstractMicroorganisms encounter acid stress during multiple bioprocesses. Microbial species have therefore developed a variety of resistance mechanisms. The damage caused by acidic environments is mitigated through the maintenance of pH homeostasis, cell membrane integrity and fluidity, metabolic regulation, and macromolecule repair. The acid tolerance mechanisms can be used to protect probiotics against gastric acids during the process of food intake, and can enhance the biosynthesis of organic acids. The combination of systems and synthetic biology technologies offers new and wide prospects for the industrial applications of microbial acid tolerance mechanisms. In this review, we summarize acid stress response mechanisms of microbial cells, illustrate the application of microbial acid tolerance in industry, and prospect the introduction of systems and synthetic biology to further explore the acid tolerance mechanisms and construct a microbial cell factory for valuable chemicals.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Yinghang Liu ◽  
Zhaoxuan Wang ◽  
Zhiyong Cui ◽  
Qingsheng Qi ◽  
Jin Hou

AbstractProducing high value-added products from waste lipid feedstock by microbial cell factory has great advantages to minimize the pollution as well as improve the economic value of wasted oils and fats. Yarrowia lipolytica is a non-conventional oleaginous yeast and can grow on a variety of hydrophobic substrates. In this study, we explored its ability to synthesize α-farnesene, an important sesquiterpene, using lipid feedstock. Based on the α-farnesene production strain, we constructed previously, we identified that Erg12 was the key limiting factor to further increase the α-farnesene production. The α-farnesene production was improved by 35.8% through increasing the copy number of ERG12 and FSERG20 on oleic acid substrate. Expression of heterologous VHb further improved α-farnesene production by 12.7%. Combining metabolic engineering with the optimization of fermentation conditions, the α-farnesene titer and yield reached 10.2 g/L and 0.1 g/g oleic acid, respectively, in fed-batch cultivation. The α-farnesene synthesis ability on waste cooking oil and other edible oils were also explored. Compared with using glucose as carbon source, using lipid substrates obtained higher α-farnesene yield and titer, but lower by-products accumulation, demonstrating the advantage of Y. lipolytica to synthesize high value-added products using lipid feedstock.


2021 ◽  
Author(s):  
Timothy C. Cairns ◽  
Lars Barthel ◽  
Vera Meyer

Abstract The filamentous ascomycete fungus Aspergillus niger is a prolific secretor of organic acids, proteins, enzymes and secondary metabolites. Throughout the last century, biotechnologists have developed A. niger into a multipurpose cell factory with a product portfolio worth billions of dollars each year. Recent technological advances, from genome editing to other molecular and omics tools, promise to revolutionize our understanding of A. niger biology, ultimately to increase efficiency of existing industrial applications or even to make entirely new products. However, various challenges to this biotechnological vision, many several decades old, still limit applications of this fungus. These include an inability to tightly control A. niger growth for optimal productivity, and a lack of high-throughput cultivation conditions for mutant screening. In this mini-review, we summarize the current state-of-the-art for A. niger biotechnology with special focus on organic acids (citric acid, malic acid, gluconic acid and itaconic acid), secreted proteins and secondary metabolites, and discuss how new technological developments can be applied to comprehensively address a variety of old and persistent challenges.


2017 ◽  
Vol 13 (1) ◽  
pp. 1700465 ◽  
Author(s):  
Helene Lunde Robertsen ◽  
Tilmann Weber ◽  
Hyun Uk Kim ◽  
Sang Yup Lee

2021 ◽  
Author(s):  
Sadat M. R. Khattab ◽  
Takashi Watanabe

ABSTRACTGlycerol is an eco-friendly solvent enhancing plant-biomass decomposition through a glycerolysis process in many pretreatment methods. Nonetheless, the lack of efficient conversion of glycerol by natural Saccharomyces cerevisiae restrains many of these scenarios. Here we outline the complete strategy for the generation of efficient glycerol fermenting yeast by rewriting the oxidation of cytosolic nicotinamide adenine dinucleotide (NADH) by O2-dependent dynamic shuttle while abolishing both glycerol phosphorylation and biosynthesis pathways. By following a vigorous glycerol oxidative pathway, the engineered strain demonstrated augmentation in conversion efficiency (CE) reach up to 0.49g-ethanol/g-glycerol—98% of theoretical conversion—with production rate >1 g/L-1h-1 when supplementing glycerol as a single fed-batch on a rich-medium. Furthermore, the engineered strain showed a new capability toward ferment a mixture of glycerol and glucose with producing >86 g/L of bioethanol with 92.8% of the CE. To our knowledge, this is the highest ever reported titer in this regard. Notably, this strategy flipped our ancestral yeast from non-growth on glycerol, on the minimal medium, to a fermenting strain with productivities 0.25-0.5 g/L-1h-1 and 84-78% of CE, respectively and 90% of total conversions to the products. The findings in metabolic engineering here may release the limitations of utilizing glycerol in several eco-friendly biorefinery approaches.IMPORTANCEWith the avenues for achieving efficient lignocellulosic biorefinery scenarios, glycerol gained keen attention as an eco-friendly biomass-derived solvent for enhancing the dissociation of lignin and cell wall polysaccharides during pretreatment process. Co-fermentation of glycerol with the released sugars from biomass after the glycerolysis expands the resource for ethanol production and release from the burden of component separation. Titer productivities are one of the main obstacles for industrial applications of this process. Therefore, the generation of highly efficient glycerol fermenting yeast significantly promotes the applicability of the integrated biorefineries scenario. Besides, the glycerol is an important carbon resource for producing chemicals. Hence, the metabolic flux control of yeast from glycerol contributes to generation of cell factory producing chemicals from glycerol, promoting the association between biodiesel and bioethanol industries. Thus, this study will shed light on solving the problems of global warming and agricultural wastes, leading to establishment of the sustainable society.


Sign in / Sign up

Export Citation Format

Share Document