scholarly journals Genipin as An Emergent Tool in the Design of Biocatalysts: Mechanism of Reaction and Applications

Catalysts ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 1035 ◽  
Author(s):  
Veymar G. Tacias-Pascacio ◽  
Esmeralda García-Parra ◽  
Gilber Vela-Gutiérrez ◽  
Jose J. Virgen-Ortiz ◽  
Ángel Berenguer-Murcia ◽  
...  

Genipin is a reagent isolated from the Gardenia jasminoides fruit extract, and whose low toxicity and good crosslinking properties have converted it into a reactive whose popularity is increasing by the day. These properties have made it widely used in many medical applications, mainly in the production of chitosan materials (crosslinked by this reactive), biological scaffolds for tissue engineering, and nanoparticles of chitosan and nanogels of proteins for controlled drug delivery, the genipin crosslinking being a key point to strengthen the stability of these materials. This review is focused on the mechanism of reaction of this reagent and its use in the design of biocatalysts, where genipin plays a double role, as a support activating agent and as inter- or intramolecular crosslinker. Its low toxicity makes this compound an ideal alterative to glutaraldehyde in these processes. Moreover, in some cases the features of the biocatalysts prepared using genipin surpassed those of the biocatalysts prepared using other standard crosslinkers, even disregarding toxicity. In this way, genipin is a very promising reagent in the design of biocatalysts.

2012 ◽  
Vol 584 ◽  
pp. 258-262 ◽  
Author(s):  
Sundarrajan Parani ◽  
Baddireddi Subhadra Lakshmi ◽  
Kanniyan Pandian

Alginate biopolymer stabilized CdTe quantum dot (QD) was prepared and it was encapsulated with folic acid conjugated chitosan for controlled drug delivery of anticancer drug 6-mercaptopurine (6-MP). In addition to alginate, chitosan enhances the stability of QD. Also, in addition to chitosan, alginate binds to the drug leading to enhance the loading efficiency of the resulting drug carrier. The drug release profile of the carrier was investigated by in-vitro. The present study has shown that this drug carrier is feasible for drug delivery and will be important beneficiary for cancer therapy.


Author(s):  
Richard H. Rand ◽  
Christoffer R. Heckman

We investigate the stability of the in-phase mode in a system of two delay-coupled bubble oscillators. The bubble oscillator model is based on a 1956 paper by Keller and Kolodner. Delay coupling is due to the time it takes for a signal to travel from one bubble to another through the liquid medium that surrounds them. Using techniques from the theory of delay-differential equations as well as the method of averaging, we show that the equilibrium of the in-phase mode can be made unstable if the delay is long enough and if the coupling strength is large enough, resulting in a Hopf bifurcation. This work is motivated by medical applications involving noninvasive localized drug delivery via microbubbles.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Pascalin Tiam Kapen ◽  
Cédric Gervais Njingang Ketchate ◽  
Didier Fokwa ◽  
Ghislain Tchuen

Purpose For this purpose, a linear stability analysis based on the Navier–Stokes and Maxwell equations is made leading to an eigenvalue differential equation of the modified Orr–Sommerfeld type which is solved numerically by the spectral collocation method based on Chebyshev polynomials. Unlike previous studies, blood is considered as a non-Newtonian fluid. The effects of various parameters such as volume fraction of nanoparticles, Casson parameter, Darcy number, Hartmann number on flow stability were examined and presented. This paper aims to investigate a linear stability analysis of non-Newtonian blood flow with magnetic nanoparticles with an application to controlled drug delivery. Design/methodology/approach Targeted delivery of therapeutic agents such as stem cells and drugs using magnetic nanoparticles with the help of external magnetic fields is an emerging treatment modality for many diseases. To this end, controlling the movement of nanoparticles in the human body is of great importance. This study investigates controlled drug delivery by using magnetic nanoparticles in a porous artery under the influence of a magnetic field. Findings It was found the following: the Casson parameter affects the stability of the flow by amplifying the amplitude of the disturbance which reflects its destabilizing effect. It emerges from this study that the taking into account of the non-Newtonian character is essential in the modeling of such a system, and that the results can be very different from those obtained by supposing that the blood is a Newtonian fluid. The presence of iron oxide nanoparticles in the blood increases the inertia of the fluid, which dampens the disturbances. The Strouhal number has a stabilizing effect on the flow which makes it possible to say that the oscillating circulation mechanisms dampen the disturbances. The Darcy number affects the stability of the flow and has a stabilizing effect, which makes it possible to increase the contact surface between the nanoparticles and the fluid allowing very high heat transfer rates to be obtained. It also emerges from this study that the presence of the porosity prevents the sedimentation of the nanoparticles. By studying the effect of the magnetic field on the stability of the flow, it is observed that the Hartmann number keeps the flow completely stable. This allows saying that the magnetic field makes the dissipations very important because the kinetic energy of the electrically conductive ferrofluid is absorbed by the Lorentz force. Originality/value The originality of this paper resides on the application of the linear stability analysis for controlled drug delivery.


Molecules ◽  
2018 ◽  
Vol 23 (10) ◽  
pp. 2661 ◽  
Author(s):  
Jianghua Li ◽  
Chao Cai ◽  
Jiarui Li ◽  
Jun Li ◽  
Jia Li ◽  
...  

This review discusses different forms of nanomaterials generated from chitosan and its derivatives for controlled drug delivery. Nanomaterials are drug carriers with multiple features, including target delivery triggered by environmental, pH, thermal responses, enhanced biocompatibility, and the ability to cross the blood-brain barrier. Chitosan (CS), a natural polysaccharide largely obtained from marine crustaceans, is a promising drug delivery vector for therapeutics and diagnostics, owing to its biocompatibility, biodegradability, low toxicity, and structural variability. This review describes various approaches to obtain novel CS derivatives, including their distinct advantages, as well as different forms of nanomaterials recently developed from CS. The advanced applications of CS-based nanomaterials are presented here in terms of their specific functions. Recent studies have proven that nanotechnology combined with CS and its derivatives could potentially circumvent obstacles in the transport of drugs thereby improving the drug efficacy. CS-based nanomaterials have been shown to be highly effective in targeted drug therapy.


2021 ◽  
Vol 50 (7) ◽  
pp. 4541-4563
Author(s):  
Zhixin Zhou ◽  
Margarita Vázquez-González ◽  
Itamar Willner

Different chemical, physical, and biomarker triggers to unlock the metal–organic framework nanoparticles and release the drugs loaded in the particles will be addressed.


2020 ◽  
Vol 27 (21) ◽  
pp. 3534-3554 ◽  
Author(s):  
Fan Jiang ◽  
Yunqi Zhu ◽  
Changyang Gong ◽  
Xin Wei

Atherosclerosis is the leading inducement of cardiovascular diseases, which ranks the first cause of global deaths. It is an arterial disease associated with dyslipidemia and changes in the composition of the vascular wall. Besides invasive surgical strategy, the current conservative clinical treatment for atherosclerosis falls into two categories, lipid regulating-based therapy and antiinflammatory therapy. However, the existing strategies based on conventional drug delivery systems have shown limited efficacy against disease development and plenty of side effects. Nanomedicine has great potential in the development of targeted therapy, controlled drug delivery and release, the design of novel specific drugs and diagnostic modalities, and biocompatible scaffolds with multifunctional characteristics, which has led to an evolution in the diagnosis and treatment of atherosclerosis. This paper will focus on the latest nanomedicine strategies for atherosclerosis diagnosis and treatment as well as discussing the potential therapeutic targets during atherosclerosis progress, which could form the basis of development of novel nanoplatform against atherosclerosis.


Sign in / Sign up

Export Citation Format

Share Document