marine crustaceans
Recently Published Documents


TOTAL DOCUMENTS

125
(FIVE YEARS 17)

H-INDEX

25
(FIVE YEARS 3)

Molecules ◽  
2021 ◽  
Vol 26 (24) ◽  
pp. 7603
Author(s):  
Kellie Morgan ◽  
Colin Conway ◽  
Sheila Faherty ◽  
Cormac Quigley

Chitin, the second most abundant biopolymer on earth, is utilised in a wide range of applications including wastewater treatment, drug delivery, wound healing, tissue engineering, and stem cell technology among others. This review compares the most prevalent strategies for the extraction of chitin from crustacean sources including chemical methods that involve the use of harsh solvents and emerging methods using deep eutectic solvents (DES). In recent years, a significant amount of research has been carried out to identify and develop environmentally friendly processes which might facilitate the replacement of problematic chemicals utilised in conventional chemical extraction strategies with DES. This article provides an overview of different experimental parameters used in the DES-mediated extraction of chitin while also comparing the purity and yields of associated extracts with conventional methods. As part of this review, we compare the relative proportions of chitin and extraneous materials in different marine crustaceans. We show the importance of the species of crustacean shell in relation to chitin purity and discuss the significance of varying process parameters associated with different extraction strategies. The review also describes some recent applications associated with chitin. Following on from this review, we suggest recommendations for further investigation into chitin extraction, especially for experimental research pertaining to the enhancement of the “environmentally friendly” nature of the process. It is hoped that this article will provide researchers with a platform to better understand the benefits and limitations of DES-mediated extractions thereby further promoting knowledge in this area.


Author(s):  
Cristian Castro ◽  
Ligia Gargallo ◽  
Deodato Radić

: This mini-review deals with the miscibility behavior of two biopolymers, chitosan, and alginate. It is well known that the miscibility in multifunctional polymers blends is favored due to specific interactions, which origin a negative heat of mixing. Particular interest is focused on functionalized polymers because they are the most suitable way to obtain interacting polymers, producing a single-phase material. Due to the polyfunctionality of chitosan (CS) and other biopolymers, they can be taken into account as a basis of a strongly interacting polymer. They would allow obtaining compatible polymeric materials. For this reason, blends containing CS with different vinyl polymers have been studied. The most significant polymeric blends with these natural polymers will be analyzed in this review. Chitosan is obtained from the biopolymer chitin through sequential processes of demineralization, deproteinization, and deacetylation. The native chitin is obtained by direct separation from the marine crustaceans shell, abundant on the sea coasts. Some classic results that relate to the polymeric blends containing amphiphilic polymers will be discussed. Another biopolymer of the coast is Sodium Alginate (SA). Alginate also allows the formation of compatible polymer blends. Results in this regard will also be analyzed in this review.


2021 ◽  
Vol 213 ◽  
pp. 112068
Author(s):  
Isabella Parlapiano ◽  
Francesca Biandolino ◽  
Asia Grattagliano ◽  
Andrea Ruscito ◽  
Giovanni Libralato ◽  
...  

2021 ◽  
Vol 4 ◽  
Author(s):  
Sonja Leidenberger ◽  
Iqram Muhammаd ◽  
Sarah J. Bourlat

The biodiversity crisis is advancing rapidly. One tool to measure extinction risk is the Red List of Threatened Species which follows the IUCN evaluation criteria (International Union for Conservation of Nature). Many aquatic invertebrates in Northern Europe are completely missing a red listing process and are evaluated as Data Deficient (DD) or Not Evaluated (NE). In our project, we focus on marine crustaceans and freshwater molluscs (Bivalvia). A systematic survey of more than 440 crustacean and 44 molluscan species in 12 Northern European countries shows that while many freshwater bivalve molluscs and marine crustaceans have existing molecular barcodes as well as digital occurrence records in databases (e.g. in GBIF, the Global Biodiversity Information Facility), there exists no evaluation process or regular monitoring for those species and their population status. With such a high level of non-evaluation of species status, species action plans (for single species or multi-taxon approaches) are far away from reality. In general, traditional monitoring methods based on observational surveys are known to be inefficient, costly and time consuming. e-DNA allows us to detect species with a high level of sensitivity as long as those assays are well validated. Molecular occurrence records can be used to detect rare species and to collect population information. In our Swedish project, we are metabarcoding sediment and plankton samples using metazoan and taxon-specific primers to detect threatened aquatic species. During 2019 and 2020, we collected samples at 15 localities in two marine protected areas for marine crustaceans and at 15 different localities for freshwater molluscs at the Swedish west coast. At each location plankton, sediment and traditional aquatic monitoring samples were taken. The idea is to compare how the methods perform in finding rare species, which could improve the data for those groups so they can be evaluated in the next round of red listing (2025) in Sweden. During the entire project, there is an on-going dialogue with stakeholders and experts from the Swedish Species Information Centre, responsible for the red listing process in the country.


2021 ◽  
Author(s):  
Rocío Elizabeth Muciño-Márquez ◽  
Dalila Aldana-Aranda ◽  
María Guadalupe Figueroa-Torres ◽  
Oscar Hernández-Almeida

Epibiosis occur frequently on the shells of some marine crustaceans, which often serve as substrate for various species of algae, there is few information on the associations between these. The objective of this study was to determine if the gastropod mollusk Aliger gigas (formerly Lobatus gigas) in larval had some sort of the association with algal. To the above was carried out collecting egg masses in the environment, the larvae were cultivated in seawater filtered 5 μm. The algal material found was observed in electron microscopy, for its identification and quantification. We analyzed 60 larvae aged 2–44 days for analyzing the structure of the shell and its epibionts. Of the larvae analyzed, 50 larvae presented epizoic. The algae community consisted of 28 taxa, and composed of 25 diatoms (Bacillariophyta) and three cyanophytes (Cyanobacteria). The H´ diversity values fluctuated between 0.2 a 1.2. The dominant and frequent species were formed by diatoms: Nitzschia panduriformis var. minor, Halamphora sp. and Cyclophora sp.


2020 ◽  
pp. 389-412
Author(s):  
Marcelo M. Rivadeneira ◽  
Gary C.B. Poore

The latitudinal diversity gradient (LDG) is a phenomenon acknowledged for over two centuries. The LDG of marine crustaceans has been studied often but without reaching consensus on its ultimate causative processes. We have undertaken a new synthesis to assess the generality of the LDG and evaluated how potential sampling and other biases, spatial scale, geographic regions, taxonomic aggregation, and differences between clades affect patterns. A meta-analysis of 186 datasets, encompassing 20 studies and 7 crustacean orders, revealed a strong effect size of the species richness-latitude correlation, supporting the existence of a “canonical” LDG. The effect size was sensitive to spatial scale, with studies conducted over shorter latitudinal ranges tending to show a weaker LDG. Correcting for sampling biases in the number of occurrences, taxonomic completeness and spatial heterogeneity did not affect the strength of the LDG, nor did the degree of taxonomic aggregation; effect sizes were similar at family and ordinal levels. However, between orders effect sizes varied strongly, with peracarid orders (Amphipoda, Cumacea, Isopoda) showing a weaker or inverse LDG compared with non-peracarid orders (Calanoida, Euphausiacea, Decapoda, Sessilia). Additional analyses based on a global dataset of >2 million occurrences of >13,000 species revealed patterns undetected by the meta-analysis, including: (1) the existence of a marked bi-modal LDG, with peaks of diversity in subtropical areas (Calanoidea, Decapoda, Sessilia) and in temperate areas (Amphipoda, Isopoda), (2) interhemispheric asymmetry, variable across groups and depths, and (3) ocean basin differences in the shape of the LDG, dependent on taxonomic clade. Both ecological and evolutionary processes play a part. The fossil record of Decapoda showed that its global canonical LDG can be explained by median and range of the age of genera, i.e., hotspots of diversity harbor both younger and older genera and contain a high proportion of genera originating during the Paleogene. In addition, the effect size was negatively related to family age, the LDG being stronger in older families of early Cenozoic and Mesozoic origin. Modes of larval development also played a significant part, taxa without planktonic larvae having weaker or inverse LDG compared with taxa with pelagic larvae. Because clades with direct development tend to show smaller bathymetric and latitudinal ranges than those with pelagic larvae, differences in diversification rates may be implied. Overall, our evidence suggested that the ultimate causes of the LDG are deeply tied to geographic differences in macro-evolutionary rates, i.e., greater rates of species origin and lower rates of extinction in the tropics than in higher latitudes combined with a strong tropical niche conservatism.


Sign in / Sign up

Export Citation Format

Share Document