scholarly journals The Adipose-Derived Stem Cell and Endothelial Cell Coculture System—Role of Growth Factors?

Cells ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 2074
Author(s):  
Dominik Steiner ◽  
Hilkea Mutschall ◽  
Sophie Winkler ◽  
Raymund E. Horch ◽  
Andreas Arkudas

Adequate vascularization is a fundamental prerequisite for bone regeneration, formation and tissue engineering applications. Endothelialization of scaffold materials is a promising strategy to support neovascularization and bone tissue formation. Besides oxygen and nutrition supply, the endothelial network plays an important role concerning osteogenic differentiation of osteoprogenitor cells and consecutive bone formation. In this study we aimed to enhance the growth stimulating, proangiogenic and osteogenic features of the ADSC and HUVEC coculture system by means of VEGFA165 and BMP2 application. We were able to show that sprouting phenomena and osteogenic differentiation were enhanced in the ADSC/HUVEC coculture. Furthermore, apoptosis was unidirectionally decreased in HUVECs, but these effects were not further enhanced upon VEGFA165 or BMP2 application. In summary, the ADSC/HUVEC coculture system per se is a powerful tool for bone tissue engineering applications.

Nanomedicine ◽  
2020 ◽  
Vol 15 (20) ◽  
pp. 1995-2017
Author(s):  
Guo Ye ◽  
Fangyuan Bao ◽  
Xianzhu Zhang ◽  
Zhe Song ◽  
Youguo Liao ◽  
...  

The global incidence of bone tissue injuries has been increasing rapidly in recent years, making it imperative to develop suitable bone grafts for facilitating bone tissue regeneration. It has been demonstrated that nanomaterials/nanocomposites scaffolds can more effectively promote new bone tissue formation compared with micromaterials. This may be attributed to their nanoscaled structural and topological features that better mimic the physiological characteristics of natural bone tissue. In this review, we examined the current applications of various nanomaterial/nanocomposite scaffolds and different topological structures for bone tissue engineering, as well as the underlying mechanisms of regeneration. The potential risks and toxicity of nanomaterials will also be critically discussed. Finally, some considerations for the clinical applications of nanomaterials/nanocomposites scaffolds for bone tissue engineering are mentioned.


RSC Advances ◽  
2015 ◽  
Vol 5 (67) ◽  
pp. 54551-54562 ◽  
Author(s):  
Gracielle F. Andrade ◽  
Juliana L. Carvalho ◽  
Armando S. C. Júnior ◽  
Alfredo M. Goes ◽  
Edésia M. B. Sousa

Adipose-derived stem cells (ASCs) are currently a point of focus for bone tissue engineering applications.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Xin Huang ◽  
Donghua Huang ◽  
Ting Zhu ◽  
Xiaohua Yu ◽  
Kaicheng Xu ◽  
...  

AbstractMetal ions have been identified as important bone metabolism regulators and widely used in the field of bone tissue engineering, however their exact role during bone regeneration remains unclear. Herein, the aim of study was to comprehensively explore the interactions between osteoinductive and osteo-immunomodulatory properties of these metal ions. In particular, the osteoinductive role of zinc ions (Zn2+), as well as its interactions with local immune microenvironment during bone healing process, was investigated in this study using a sustained Zn2+ delivery system incorporating Zn2+ into β-tricalcium phosphate/poly(L-lactic acid) (TCP/PLLA) scaffolds. The presence of Zn2+ largely enhanced osteogenic differentiation of periosteum-derived progenitor cells (PDPCs), which was coincident with increased transition from M1 to M2 macrophages (M$$\varphi $$ φ s). We further confirmed that induction of M2 polarization by Zn2+ was realized via PI3K/Akt/mTOR pathway, whereas marker molecules on this pathway were strictly regulated by the addition of Zn2+. Synergically, this favorable immunomodulatory effect of Zn2+ further improved the osteogenic differentiation of PDPCs induced by Zn2+ in vitro. Consistently, the spontaneous osteogenesis and pro-healing osteoimmunomodulation of the scaffolds were thoroughly identified in vivo using a rat air pouch model and a calvarial critical-size defect model. Taken together, Zn2+-releasing bioactive ceramics could be ideal scaffolds in bone tissue engineering due to their reciprocal interactions between osteoinductive and immunomodulatory characteristics. Clarification of this synergic role of Zn2+ during osteogenesis could pave the way to develop more sophisticated metal-ion based orthopedic therapeutic strategies.


2018 ◽  
Vol 1 (3) ◽  
pp. 25-93 ◽  
Author(s):  
Sergey V. Dorozhkin

The chemical and structural similarities of calcium orthophosphates (abbreviated as CaPO4)to the mineral composition of natural bones and teeth have made them a good candidate for bone tissue engineering applications. Nowadays, a variety of natural or synthetic CaPO4-based biomaterials is produced and has been extensively used for dental and orthopedic applications. Despite their inherent brittleness, CaPO4 materials possess several appealing characteristics as scaffold materials. Namely, their biocompatibility and variable stoichiometry, thus surface charge density, functionality and dissolution properties, make them suitable for both drug and growth factor delivery. Therefore, CaPO4, especially hydroxyapatite (HA) and tricalcium phosphates (TCPs), have attracted a significant interest in simultaneous use as bone grafts and drug delivery vehicles. Namely, CaPO4-based three-dimensional (3D) scaffolds and/or carriers have been designed to induce bone formation and vascularization. These scaffolds are usually porous and harbor various types of drugs, biologically active molecules and/or cells. Over the past few decades, their application as bone grafts in combination with stem cells has gained much importance. This review discusses the source, manufacturing methods and advantages of using CaPO4 scaffolds for bone tissue engineering applications. Perspective future applications comprise drug delivery and tissue engineering purposes.


Sign in / Sign up

Export Citation Format

Share Document