scholarly journals When Down Is Up: Heterochromatin, Nuclear Organization and X Upregulation

Cells ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 3416
Author(s):  
Reem Makki ◽  
Victoria H. Meller

Organisms with highly differentiated sex chromosomes face an imbalance in X-linked gene dosage. Male Drosophila solve this problem by increasing expression from virtually every gene on their single X chromosome, a process known as dosage compensation. This involves a ribonucleoprotein complex that is recruited to active, X-linked genes to remodel chromatin and increase expression. Interestingly, the male X chromosome is also enriched for several proteins associated with heterochromatin. Furthermore, the polytenized male X is selectively disrupted by the loss of factors involved in repression, silencing, heterochromatin formation or chromatin remodeling. Mutations in many of these factors preferentially reduce male survival or enhance the lethality of mutations that prevent normal recognition of the X chromosome. The involvement of primarily repressive factors in a process that elevates expression has long been puzzling. Interestingly, recent work suggests that the siRNA pathway, often associated with heterochromatin formation and repression, also helps the dosage compensation machinery identify the X chromosome. In light of this finding, we revisit the evidence that links nuclear organization and heterochromatin to regulation of the male X chromosome.

1993 ◽  
Vol 4 (2) ◽  
pp. 129-139 ◽  
Author(s):  
Giuseppe Borsani ◽  
Andrea Ballabio

Genetics ◽  
1997 ◽  
Vol 145 (3) ◽  
pp. 729-736
Author(s):  
Irina Arkhipova ◽  
Jingjing Li ◽  
Matthew Meselson

A procedure is described for determining the mode and magnitude of gene-dosage compensation of transformed genes. It involves measurement of the ratio of the activity of a gene inserted at X-linked sites to the activity of the same gene inserted at autosomal sites. Applying the procedure to the Drosophila pseudoobscura Hsp82 gene inserted at ectopic sites in D. melanogaster and taking gene activity as proportional to the amount of transcript per gene copy, we conclude that (1) in both adults and larvae the gene is not compensated at autosomal sites or at a site in β-heterochromatin at the base of the X chromosome and is fully compensated at euchromatic X-chromosomal sites; (2) inappropriate normalization is responsible for a claim that the gene is compensated at autosomal sites; and (3) the observed compensation operates mainly or entirely by heightened activity of X-linked genes in males, rather than by reduced activity in females.


2012 ◽  
Vol 2012 ◽  
pp. 1-12
Author(s):  
Michael B. Wells ◽  
Györgyi Csankovszki ◽  
Laura M. Custer

Dosage compensation balances gene expression levels between the sex chromosomes and autosomes and sex-chromosome-linked gene expression levels between the sexes. Different dosage compensation strategies evolved in different lineages, but all involve changes in chromatin. This paper discusses our current understanding of how modifications of the histone H4 tail, particularly changes in levels of H4 lysine 16 acetylation and H4 lysine 20 methylation, can be used in different contexts to either modulate gene expression levels twofold or to completely inhibit transcription.


Genetics ◽  
1994 ◽  
Vol 138 (3) ◽  
pp. 787-790
Author(s):  
P R da Cunha ◽  
B Granadino ◽  
A L Perondini ◽  
L Sánchez

Abstract Dosage compensation refers to the process whereby females and males with different doses of sex chromosomes have similar amounts of products from sex chromosome-linked genes. We analyzed the process of dosage compensation in Sciara ocellaris, Diptera of the suborder Nematocera. By autoradiography and measurements of X-linked rRNA in females (XX) and males (XO), we found that the rate of transcription of the single X chromosome in males is similar to that of the two X chromosomes in females. This, together with the bloated appearance of the X chromosome in males, support the idea that in sciarids dosage compensation is accomplished by hypertranscription of the X chromosome in males.


2021 ◽  
Vol 4 (9) ◽  
pp. e202000996
Author(s):  
Claudia Isabelle Keller Valsecchi ◽  
Eric Marois ◽  
M Felicia Basilicata ◽  
Plamen Georgiev ◽  
Asifa Akhtar

Sex chromosomes induce potentially deleterious gene expression imbalances that are frequently corrected by dosage compensation (DC). Three distinct molecular strategies to achieve DC have been previously described in nematodes, fruit flies, and mammals. Is this a consequence of distinct genomes, functional or ecological constraints, or random initial commitment to an evolutionary trajectory? Here, we study DC in the malaria mosquito Anopheles gambiae. The Anopheles and Drosophila X chromosomes evolved independently but share a high degree of homology. We find that Anopheles achieves DC by a mechanism distinct from the Drosophila MSL complex–histone H4 lysine 16 acetylation pathway. CRISPR knockout of Anopheles msl-2 leads to embryonic lethality in both sexes. Transcriptome analyses indicate that this phenotype is not a consequence of defective X chromosome DC. By immunofluorescence and ChIP, H4K16ac does not preferentially enrich on the male X. Instead, the mosquito MSL pathway regulates conserved developmental genes. We conclude that a novel mechanism confers X chromosome up-regulation in Anopheles. Our findings highlight the pluralism of gene-dosage buffering mechanisms even under similar genomic and functional constraints.


Genetics ◽  
1989 ◽  
Vol 122 (3) ◽  
pp. 579-593 ◽  
Author(s):  
C Nusbaum ◽  
B J Meyer

Abstract We have identified a new X-linked gene, sdc-2, that controls the hermaphrodite (XX) modes of both sex determination and X chromosome dosage compensation in Caenorhabditis elegans. Mutations in sdc-2 cause phenotypes that appear to result from a shift of both the sex determination and dosage compensation processes in XX animals to the XO modes of expression. Twenty-eight independent sdc-2 mutations have no apparent effect in XO animals, but cause two distinct phenotypes in XX animals: masculinization, reflecting a defect in sex determination, and lethality or dumpiness, reflecting a disruption in dosage compensation. The dosage compensation defect can be demonstrated directly by showing that sdc-2 mutations cause elevated levels of several X-linked transcripts in XX but not XO animals. While the masculinization is blocked by mutations in sex determining genes required for male development (her-1 and fem-3), the lethality, dumpiness and overexpression of X-linked genes are not, indicating that the effect of sdc-2 mutations on sex determination and dosage compensation are ultimately implemented by two independent pathways. We propose a model in which sdc-2 is involved in the coordinate control of both sex determination and dosage compensation in XX animals and acts in the regulatory hierarchy at a step prior to the divergence of the two pathways.


2020 ◽  
Vol 160 (6) ◽  
pp. 283-294 ◽  
Author(s):  
Paola Rebuzzini ◽  
Maurizio Zuccotti ◽  
Silvia Garagna

X dosage compensation between XX female and XY male mammalian cells is achieved by a process known as X-chromosome inactivation (XCI). XCI initiates early during preimplantation development in female cells, and it is subsequently stably maintained in somatic cells. However, XCI is a reversible process that occurs in vivo in the inner cell mass of the blastocyst, in primordial germ cells or in spermatids during reprogramming. Erasure of transcriptional gene silencing can occur though a mechanism named X-chromosome reactivation (XCR). XCI and XCR have been substantially deciphered in the mouse, whereas they still remain debated in the human. In this review, we summarized the recent advances in the knowledge of X-linked gene dosage compensation during mouse and human preimplantation development and in pluripotent stem cells.


PLoS Biology ◽  
2013 ◽  
Vol 11 (11) ◽  
pp. e1001711 ◽  
Author(s):  
Qi Zhou ◽  
Christopher E. Ellison ◽  
Vera B. Kaiser ◽  
Artyom A. Alekseyenko ◽  
Andrey A. Gorchakov ◽  
...  

eLife ◽  
2016 ◽  
Vol 5 ◽  
Author(s):  
Feng Wang ◽  
JongDae Shin ◽  
Jeremy M Shea ◽  
Jun Yu ◽  
Ana Bošković ◽  
...  

Mammalian X-linked gene expression is highly regulated as female cells contain two and male one X chromosome (X). To adjust the X gene dosage between genders, female mouse preimplantation embryos undergo an imprinted form of X chromosome inactivation (iXCI) that requires both Rlim (also known as Rnf12) and the long non-coding RNA Xist. Moreover, it is thought that gene expression from the single active X is upregulated to correct for bi-allelic autosomal (A) gene expression. We have combined mouse genetics with RNA-seq on single mouse embryos to investigate functions of Rlim on the temporal regulation of iXCI and Xist. Our results reveal crucial roles of Rlim for the maintenance of high Xist RNA levels, Xist clouds and X-silencing in female embryos at blastocyst stages, while initial Xist expression appears Rlim-independent. We find further that X/A upregulation is initiated in early male and female preimplantation embryos.


2020 ◽  
Author(s):  
T Chae ◽  
A Harkess ◽  
RC Moore

ABSTRACTOne evolutionary path from hermaphroditism to dioecy is via a gynodioecious intermediate. The evolution of dioecy may also coincide with the formation of sex chromosomes that possess sex-determining loci that are physically linked in a region of suppressed recombination. Dioecious papaya (Carica papaya) has an XY chromosome system, where the presence of a Y chromosome determines males. However, in cultivation, papaya is gynodioecious, due to the conversion of the male Y chromosome to a hermaphroditic Yh chromosome during its domestication. We investigated gene expression linked to the X, Y, and Yh chromosomes at different floral developmental stages in order to identify differentially expressed genes (DEGs) that may be involved in the sexual reversion of males to hermaphrodites. We identified 309 sex-biased genes found on the sex chromosomes, most of which are found in the pseudoautosomal regions (PARs). Female (XX) expression in the sex determining region (SDR) was almost double that of X-linked expression in males (XY) and hermaphrodites (XYh), which rules out dosage compensation for most sex-linked gene; although, an analysis of hemizygous X-linked loci found evidence of partial dosage compensation. Furthermore, we identified a potential candidate gene associated with both sex determination and the transition to hermaphroditism, a homolog of the MADS-box protein SHORT VEGETATIVE PHASE (SVG).


Sign in / Sign up

Export Citation Format

Share Document