scholarly journals Protective Effects of Licochalcone A Ameliorates Obesity and Non-Alcoholic Fatty Liver Disease Via Promotion of the Sirt-1/AMPK Pathway in Mice Fed a High-Fat Diet

Cells ◽  
2019 ◽  
Vol 8 (5) ◽  
pp. 447 ◽  
Author(s):  
Chian-Jiun Liou ◽  
Yau-Ker Lee ◽  
Nai-Chun Ting ◽  
Ya-Ling Chen ◽  
Szu-Chuan Shen ◽  
...  

Licochalcone A is a chalcone isolated from Glycyrrhiza uralensis. It showed anti-tumor and anti-inflammatory properties in mice with acute lung injuries and regulated lipid metabolism through the activation of AMP-activated protein kinase (AMPK) in hepatocytes. However, the effects of licochalcone A on reducing weight gain and improving nonalcoholic fatty liver disease (NAFLD) are unclear. Thus, the present study investigated whether licochalcone A ameliorated weight loss and lipid metabolism in the liver of high-fat diet (HFD)-induced obese mice. Male C57BL/6 mice were fed an HFD to induce obesity and NAFLD, and then were injected intraperitoneally with licochalcone A. In another experiment, a fatty liver cell model was established by incubating HepG2 hepatocytes with oleic acid and treating the cells with licochalcone A to evaluate lipid metabolism. Our results demonstrated that HFD-induced obese mice treated with licochalcone A had decreased body weight as well as inguinal and epididymal adipose tissue weights compared with HFD-treated mice. Licochalcone A also ameliorated hepatocyte steatosis and decreased liver tissue weight and lipid droplet accumulation in liver tissue. We also found that licochalcone A significantly regulated serum triglycerides, low-density lipoprotein, and free fatty acids, and decreased the fasting blood glucose value. Furthermore, in vivo and in vitro, licochalcone A significantly decreased expression of the transcription factor of lipogenesis and fatty acid synthase. Licochalcone A activated the sirt-1/AMPK pathway to reduce fatty acid chain synthesis and increased lipolysis and β-oxidation in hepatocytes. Licochalcone A can potentially ameliorate obesity and NAFLD in mice via activation of the sirt1/AMPK pathway.

2019 ◽  
Vol 10 (2) ◽  
pp. 814-823 ◽  
Author(s):  
Ke Chen ◽  
Xu Chen ◽  
Hongliang Xue ◽  
Peiwen Zhang ◽  
Wanjun Fang ◽  
...  

Coenzyme Q10 regulates lipid metabolism to ameliorate the progression of NAFLD by activating the AMPK pathway.


2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Tao Liu ◽  
Li-Li Yang ◽  
Lu Zou ◽  
Dong-Fei Li ◽  
Hong-Zhu Wen ◽  
...  

Lingguizhugan decoction (LGZG), a classic traditional Chinese medicine (TCM) formula, has been used to treat obesity and hyperlipidemia in recent years, but the related mechanisms underlying the regulation of lipid metabolism by LGZG are not clear yet. Here, we reported the effectiveness and possible mechanisms of LGZG on rats with fatty liver disease induced by high-fat diet (HFD). Our results demonstrated that LGZG significantly attenuated HFD-induced fatty liver disease, as measured by body weight, liver index, epididymal fat pad-body weight ratio (EFP/BW), liver injury, and hepatic triglycerides (TG) probably through increasing serum thyroid hormone levels, improving beta-oxidation (via modulation of TRβ1 and CPT1A expression), metabolism and transport (through modulation of SREBP-1c, ACSL and ApoB100 expression) of fatty acid. In addition, we discovered the herbal combination with the properties of warming yang to relieve water retention in the formula and proposed the biological basis of LGZG conventional effect via further study on disassembled formula. This study, for the first time, revealed the mechanisms through which LGZG regulates lipid metabolism. Furthermore, our study suggested that it might be feasible to understand the scientific implications of TCM from the perspective of classic formulas’ conventional efficacy.


Author(s):  
Ana Lemus-Conejo ◽  
Elena Grao-Cruces ◽  
Rocio Toscano ◽  
Lourdes M Varela ◽  
Carmen Claro ◽  
...  

Bioactive peptides are related to the prevention and treatment of many diseases. GPETAFLR is an octapeptide which was isolated from lupine (Lupinus angustifolius L.) and showed anti-inflammatory properties. The aim of this study was to evaluate the potential activity of GPETAFLR to prevent non-alcoholic fatty liver disease (NAFLD) in high-fat diet (HFD)-induced obese mice. C57BL/6J mice were fed a standard diet or an HFD. Two of the groups fed the HFD diet were treated with GPETAFLR in their drinking water at 0,5 mg/kg/d or 1 mg/kg/d. To determine the ability of GPETAFLR to improve the onset and progression of NAFLD, histological studies, hepatic enzyme profile, inflammatory cytokine and lipid metabolism-related genes and proteins were analyzed. Our results suggest that HFD-induced inflammatory metabolic disorders were alleviated by treatment with GPETAFLR. In conclusion, dietary lupine consumption could repair HFD-induced hepatic damage, possibly via modifications in the liver’s lipid signalling pathways.


2020 ◽  
Vol 11 (4) ◽  
pp. 2943-2952 ◽  
Author(s):  
Ana Lemus-Conejo ◽  
Elena Grao-Cruces ◽  
Rocio Toscano ◽  
Lourdes M. Varela ◽  
Carmen Claro ◽  
...  

A lupine (Lupinus angustifolious L.) peptide prevents non-alcoholic fatty liver disease in high-fat-diet-induced obese mice.


2019 ◽  
Vol 3 (Supplement_1) ◽  
Author(s):  
Chen Ke ◽  
Ling Wenhua

Abstract Objectives To explore whether CoQ10 has an effect on NAFLD and the potential mechanism. Methods 2.1 Animal studies Thirty male C57BL/6 J mice (four weeks) were randomly distributed into three groups (n = 10): control group (10% Kcal from fat), the high-fat group (60% Kcal from fat), the CoQ10 group (CoQ10 1800 mg/kg, 60% Kcal from fat). The intervention time is 24 weeks. 2.2 Biochemical indicator Serum and liver biochemical markers were detected with appropriate test kits. 2.3 Histopathological evaluation H&E staining, immunohistochemistry and immunofluorescence were used to valuate the degree of NAFLD. Results 3.1 CoQ10 ameliorates high-fat diet-induced weight gain and dyslipidaemia. CoQ10 decreased the weight gain (Fig. 1A). In addition, CoQ10 reduced the high-fat diet-induced subcutaneous and visceral fat. Serum levels of TC and TG decreased in mice fed HFD with supplementation of CoQ10 (Fig. 1C). The level of HDL-c showed an unremarkable increase in mice supplemented with CoQ10, while LDL-c in this group decreased (Fig. 1D). 3.2 CoQ10 inhibited NAFLD induced by high-fat diet. The lipid droplet was reduced in the mice fed CoQ10(Fig. 2A). Analysis of Sirius Red staining showed that hepatic fibrosis was ameliorated in the mice fed CoQ10(Fig. 2B). Staining of macrophage marker, F4/80, and the leukocyte marker, CD45 showed that CoQ10 can alleviate inflammation(Fig.2C, D). CoQ10 also induce the injury of liver(Fig. 2E). 3.3 CoQ10 regulates liver lipid metabolism. CoQ10 reversed the increase of ACC and FAS and reversed the decrease of PPAR-α and CPT-1 both in mRNA and protein expression. CoQ10 could activate AMPK. Conclusions Co Q10 may attenuates high-fat diet-induced non-alcoholic fatty liver disease through activation of AMPK pathway. Funding Sources The key Project of National Natural Science Fund (grant number: 81730090). Supporting Tables, Images and/or Graphs


Sign in / Sign up

Export Citation Format

Share Document