scholarly journals Amyloid Precursor Protein (APP) and GABAergic Neurotransmission

Cells ◽  
2019 ◽  
Vol 8 (6) ◽  
pp. 550 ◽  
Author(s):  
Bor Luen Tang

The amyloid precursor protein (APP) is the parent polypeptide from which amyloid-beta (Aβ) peptides, key etiological agents of Alzheimer’s disease (AD), are generated by sequential proteolytic processing involving β- and γ-secretases. APP mutations underlie familial, early-onset AD, and the involvement of APP in AD pathology has been extensively studied. However, APP has important physiological roles in the mammalian brain, particularly its modulation of synaptic functions and neuronal survival. Recent works have now shown that APP could directly modulate γ-aminobutyric acid (GABA) neurotransmission in two broad ways. Firstly, APP is shown to interact with and modulate the levels and activity of the neuron-specific Potassium-Chloride (K+-Cl−) cotransporter KCC2/SLC12A5. The latter is key to the maintenance of neuronal chloride (Cl−) levels and the GABA reversal potential (EGABA), and is therefore important for postsynaptic GABAergic inhibition through the ionotropic GABAA receptors. Secondly, APP binds to the sushi domain of metabotropic GABAB receptor 1a (GABABR1a). In this regard, APP complexes and is co-transported with GABAB receptor dimers bearing GABABR1a to the axonal presynaptic plasma membrane. On the other hand, secreted (s)APP generated by secretase cleavages could act as a GABABR1a-binding ligand that modulates presynaptic vesicle release. The discovery of these novel roles and activities of APP in GABAergic neurotransmission underlies the physiological importance of APP in postnatal brain function.

PLoS ONE ◽  
2015 ◽  
Vol 10 (8) ◽  
pp. e0136313 ◽  
Author(s):  
Viviana A. Cavieres ◽  
Alexis González ◽  
Vanessa C. Muñoz ◽  
Claudia P. Yefi ◽  
Hianara A. Bustamante ◽  
...  

2000 ◽  
Vol 113 (11) ◽  
pp. 1857-1870 ◽  
Author(s):  
B. De Strooper ◽  
W. Annaert

Recent research has identified some key players involved in the proteolytic processing of amyloid precursor protein (APP) to amyloid beta-peptide, the principal component of the amyloid plaques in Alzheimer patients. Interesting parallels exists with the proteolysis of other proteins involved in cell differentiation, cholesterol homeostasis and stress responses. Since the cytoplasmic domain of APP is anchored to a complex protein network that might function in axonal elongation, dendritic arborisation and neuronal cell migration, the proteolysis of APP might be critically involved in intracellular signalling events.


2012 ◽  
Vol 23 (12) ◽  
pp. 2339-2351 ◽  
Author(s):  
Yogikala Prabhu ◽  
Patricia V. Burgos ◽  
Christina Schindler ◽  
Ginny G. Farías ◽  
Javier G. Magadán ◽  
...  

The β-site amyloid precursor protein (APP)–cleaving enzyme 1 (BACE1) is a transmembrane aspartyl protease that catalyzes the proteolytic processing of APP and other plasma membrane protein precursors. BACE1 cycles between the trans-Golgi network (TGN), the plasma membrane, and endosomes by virtue of signals contained within its cytosolic C-terminal domain. One of these signals is the DXXLL-motif sequence DISLL, which controls transport between the TGN and endosomes via interaction with GGA proteins. Here we show that the DISLL sequence is embedded within a longer [DE]XXXL[LI]-motif sequence, DDISLL, which mediates internalization from the plasma membrane by interaction with the clathrin-associated, heterotetrameric adaptor protein 2 (AP-2) complex. Mutation of this signal or knockdown of either AP-2 or clathrin decreases endosomal localization and increases plasma membrane localization of BACE1. Remarkably, internalization-defective BACE1 is able to cleave an APP mutant that itself cannot be delivered to endosomes. The drug brefeldin A reversibly prevents BACE1-catalyzed APP cleavage, ruling out that this reaction occurs in the endoplasmic reticulum (ER) or ER–Golgi intermediate compartment. Taken together, these observations support the notion that BACE1 is capable of cleaving APP in late compartments of the secretory pathway.


2003 ◽  
Vol 66 (11) ◽  
pp. 2177-2184 ◽  
Author(s):  
Bettina Froestl ◽  
Barbara Steiner ◽  
Walter E. Müller

2004 ◽  
Vol 24 (2) ◽  
pp. 865-874 ◽  
Author(s):  
Michelle A. Christensen ◽  
Weihui Zhou ◽  
Hong Qing ◽  
Anna Lehman ◽  
Sjaak Philipsen ◽  
...  

ABSTRACT Proteolytic processing of the β-amyloid precursor protein (APP) at the β site is essential to generate Aβ. BACE1, the major β-secretase involved in cleaving APP, has been identified as a type 1 membrane-associated aspartyl protease. We have cloned a 2.1-kb fragment upstream of the human BACE1 gene and identified key regions necessary for promoter activity. BACE1 gene expression is controlled by a TATA-less promoter. The region of bp −619 to +46 is the minimal promoter to control the transcription of the BACE1 gene. Several putative cis-acting elements, such as a GC box, HSF-1, a PU box, AP1, AP2, and lymphokine response element, are found in the 5′ flanking region of the BACE1 gene. Transcriptional activation and gel shift assays demonstrated that the BACE1 promoter contains a functional Sp1 response element, and overexpression of the transcription factor Sp1 potentiates BACE gene expression and APP processing to generate Aβ. Furthermore, Sp1 knockout reduced BACE1 expression. These results suggest that BACE1 gene expression is tightly regulated at the transcriptional level and that the transcription factor Sp1 plays an important role in regulation of BACE1 to process APP generating Aβ in Alzheimer's disease.


2010 ◽  
Vol 2010 ◽  
pp. 1-11 ◽  
Author(s):  
Angèle T. Parent ◽  
Gopal Thinakaran

Mutations inPSENgenes, which encode presenilin proteins, cause familial early-onset Alzheimer's disease (AD). Transgenic mouse models based on coexpression of familial AD-associated presenilin and amyloid precursor protein variants successfully mimic characteristic pathological features of AD, including plaque formation, synaptic dysfunction, and loss of memory. Presenilins function as the catalytic subunit ofγ-secretase, the enzyme that catalyzes intramembraneous proteolysis of amyloid precursor protein to releaseβ-amyloid peptides. Familial AD-associated mutations in presenilins alter the site ofγ-secretase cleavage in a manner that increases the generation of longer and highly fibrillogenicβ-amyloid peptides. In addition to amyloid precursor protein,γ-secretase catalyzes intramembrane proteolysis of many other substrates known to be important for synaptic function. This paper focuses on how various animal models have enabled us to elucidate the physiological importance of diverseγ-secretase substrates, including amyloid precursor protein and discusses their roles in the context of cellular signaling and synaptic function.


Sign in / Sign up

Export Citation Format

Share Document