scholarly journals Induction of Acquired Resistance towards EGFR Inhibitor Gefitinib in a Patient-Derived Xenograft Model of Non-Small Cell Lung Cancer and Subsequent Molecular Characterization

Cells ◽  
2019 ◽  
Vol 8 (7) ◽  
pp. 740 ◽  
Author(s):  
Julia Schueler ◽  
Cordula Tschuch ◽  
Kerstin Klingner ◽  
Daniel Bug ◽  
Anne-Lise Peille ◽  
...  

In up to 30% of non-small cell lung cancer (NSCLC) patients, the oncogenic driver of tumor growth is a constitutively activated epidermal growth factor receptor (EGFR). Although these patients gain great benefit from treatment with EGFR tyrosine kinase inhibitors, the development of resistance is inevitable. To model the emergence of drug resistance, an EGFR-driven, patient-derived xenograft (PDX) NSCLC model was treated continuously with Gefitinib in vivo. Over a period of more than three months, three separate clones developed and were subsequently analyzed: Whole exome sequencing and reverse phase protein arrays (RPPAs) were performed to identify the mechanism of resistance. In total, 13 genes were identified, which were mutated in all three resistant lines. Amongst them the mutations in NOMO2, ARHGEF5 and SMTNL2 were predicted as deleterious. The 53 mutated genes specific for at least two of the resistant lines were mainly involved in cell cycle activities or the Fanconi anemia pathway. On a protein level, total EGFR, total Axl, phospho-NFκB, and phospho-Stat1 were upregulated. Stat1, Stat3, MEK1/2, and NFκB displayed enhanced activation in the resistant clones determined by the phosphorylated vs. total protein ratio. In summary, we developed an NSCLC PDX line modelling possible escape mechanism under EGFR treatment. We identified three genes that have not been described before to be involved in an acquired EGFR resistance. Further functional studies are needed to decipher the underlying pathway regulation.

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Junmin Li ◽  
Rongmei Fan ◽  
Hui Xiao

Abstract Background A growing body of evidence has demonstrated the vital roles of circular RNAs (circRNAs) in cancer progression and drug resistance. We intended to explore the roles and mechanisms of circ_ZFR in the paclitaxel (PTX) resistance and progression of non-small cell lung cancer (NSCLC). Methods Two NSCLC cell lines A549 and H460 were used in this study. Quantitative real-time polymerase chain reaction (qRT-PCR) assay was conducted to measure the levels of circ_ZFR, ZFR, miR-195-5p and karyopherin subunit alpha 4 (KPNA4) mRNA. RNase R assay was used to analyze the characteristic of circ_ZFR. MTT assay was carried out to assess PTX resistance and cell proliferation. Flow cytometry analysis was utilized to analyze cell cycle and apoptosis. Transwell assay was used to examine cell migration and invasion. Western blot assay was conducted to measure the protein levels of Ki67, Twist1, E-cadherin and KPNA4. Dual-luciferase reporter assay was adopted to verify the combination between miR-195-5p and circ_ZFR or KPNA4. Murine xenograft model assay was used to investigate the effect of circ_ZFR on PTX resistance of NSCLC in vivo. Results Circ_ZFR level was enhanced in PTX-resistant NSCLC tissues and cells. Knockdown of circ_ZFR suppressed PTX resistance, cell cycle process, proliferation, migration and invasion and induced apoptosis in PTX-resistant NSCLC cells. For mechanism analysis, circ_ZFR knockdown markedly downregulated the expression of KPNA4 by sponging miR-195-5p, thereby promoting PTX sensitivity and suppressing cell progression in PTX-resistant NSCLC cells. In addition, circ_ZFR silencing enhanced PTX sensitivity of NSCLC in vivo. Conclusion Circ_ZFR knockdown played a positive role in overcoming PTX resistance of NSCLC via regulating miR-195-5p/KPNA4 axis, which might provide a possible circRNA-targeted therapy for NSCLC.


2019 ◽  
Vol 48 (4) ◽  
pp. 030006051988309 ◽  
Author(s):  
Yan Lu ◽  
Xiao Rong Luan

Objective MicroRNA (miR)-147a acts as an inhibitory miRNA in many cancers. However, its potential roles in non-small-cell lung cancer (NSCLC) remain unclear. Methods Levels of miR-147a and C-C motif chemokine ligand 5 (CCL5) were measured using a quantitative real-time PCR assay. Cell growth, migration, and invasion of NSCLC cells were assessed by colony formation, wound healing, and Transwell invasion assays, respectively. The role of miR-147a in the growth and metastatic ability of NSCLC in vivo was detected using a xenograft model and experimental lung metastasis model. Results miR-147a was downregulated in NSCLC cell lines as well as in tissues. Gain-of-function and loss-of-function analyses demonstrated that upregulation of miR-147a decreased the aggressiveness of NSCLC cells in vitro. In addition, CCL5 was identified as a target of miR-147a. We also demonstrated the effect of miR-147a in the progression of NSCLC cells via targeting CCL5. Finally, the in vivo mouse xenograft model showed that miR-147a inhibited progression of NSCLC cells. Conclusions Overall, expression of miR-147a was downregulated in NSCLC. Importantly, upregulation of miR-147a suppressed the growth and metastasis of NSCLC cells in vivo by targeting CCL5.


2019 ◽  
Vol 47 (04) ◽  
pp. 879-893 ◽  
Author(s):  
Hong Li ◽  
Ling Tan ◽  
Jia-Wei Zhang ◽  
Hong Chen ◽  
Bing Liang ◽  
...  

Yang-Yin-Qing-Fei-Tang (YYQFT) is a well-known traditional Chinese medicine used in the treatment of chronic obstructive pulmonary emphysema, bronchitis, cytomegaloviral pneumonia, but the mechanisms of the medicine are not clear. This study aimed to identify the active components of YYQFT and elucidate the underlying mechanism on non-small cell lung cancer. First, YYQFT was extracted with different solvents, and then the most effective extract was determined by assessing their effects on non-small cell lung cancer cell growth. Second, several active compounds from YYQFT were identified, and quercetin was the one of the important active ingredients. Subsequently, the in vivo antitumor activity of quercetin was confirmed in a lung cancer xenograft model in mice. 200[Formula: see text][Formula: see text]g/mL quercetin significantly reduced tumor volume without affecting body weight of the mice. Furthermore, induction of apoptosis by quercetin was detected in tumor tissues treated with quercetin. Multiple apoptosis related genes including p53, Bax and Fas were upregulated by quercetin in tumor tissue and the ratio of Bax/Bcl-2 was increased accordingly. Our results demonstrated that quercetin, as the main effective component of the YYQFT, has potent inhibitory activity on non-small cell lung cancer by regulating the ratio of Bax/Bcl-2.


2021 ◽  
Author(s):  
Shuxin Li ◽  
Jianyi Lv ◽  
Xing Zhang ◽  
Zhihui Li ◽  
Xueyun Huo ◽  
...  

Abstract Background: Small cell lung cancer (SCLC) is one of the most malignant tumors with poor prognosis. RNA-binding protein (RBP) human antigen D (HuD) has been indicated in the process of tumorigenesis and progression of lung tumors, as well as long noncoding RNAs (lncRNA). However, the role of HuD and lncRNA in SCLC remains unknown. Methods: Realtime PCR were used to examine the circulating levels of LYPLAL1-DT in the 46 SCLC patients and 18 normal controls. Assays of dual- luciferase reporter system, RNA pull-down were performed to determine that LYPLAL1-DT could sponge miR-204-5p to upregulate the expression of PFN2. Migration and invasion assay, CCK8 and colony formation assay were used to detect the malignant effect of HuD and LYPLAL1-DT. Tumor xenograft model was established and IHC assay was performed to determine how HuD and LAPLAL1-DT impact in vivo. Results: We revealed that HuD was highly expressed in SCLC tissues and cell lines. HuD boosts the proliferation, migration, invasion of SCLC cells by increasing the PFN2 mRNA stability, which promotes cytoskeleton formation. HuD also enhanced the stability of lncRNA LYPLAL1-DT, which expressed highly in the serum of patients with SCLC and acted as an oncogenic lncRNA in SCLC cells as confirmed in vitro and in vivo. Mechanistically, LYPLAL1-DT functioned as a competing endogenous RNA (ceRNA) for sponging miR-204-5p, leading to the upregulation of its target PFN2 to promote SCLC cell proliferation and invasion. In summary, our data reveal a regulatory pathway in which HuD stabilizes PFN2 mRNA and LYPLAL1-DT, which in turn increases PFN2 expression by binding to miR-204-5p, and ultimately promotes tumorigenesis and invasion in SCLC.Conclusions: Our findings reveal novel regulatory axes involving HuD/PFN2 and lncRNA LYPLAL1-DT/miR-204-5p/PFN2 in the development and progression of small cell lung cancer (SCLC), providing novel prognostic indicators and promising therapeutic targets.


2021 ◽  
Vol 03 (01) ◽  
pp. e1-e7
Author(s):  
Xiu Gu ◽  
Zi-Xue Zhang ◽  
Min-Ru Jiao ◽  
Xin-Yan Peng ◽  
Jian-Qi Li ◽  
...  

A novel series of quinazoline derivatives were designed, synthesized, and evaluated as multikinase inhibitors. Most of these compounds showed antiproliferation activities of several human cancer cell lines and exhibited inhibition efficacy against the estimated glomerular filtration rate (EGFR) in the nanomolar level. Among those compounds, compound B5 (also named SIPI6473) displayed the maximum effect, and thus was chosen for further study. Our data revealed that B5 inhibited the activity of several kinases (such as EGFR, VEGFR2, and PDGFRα) that contributed to the development of non-small cell lung cancer (NSCLC). Besides, an in vivo study also showed that B5 inhibited tumor growth without signs of adverse effects in the A549 xenograft model. In conclusion, B5 may represent a new and promising drug for the treatment of NSCLC.


2021 ◽  
Vol 12 (7) ◽  
Author(s):  
Jianjiao Ni ◽  
Xiaofei Zhang ◽  
Juan Li ◽  
Zhiqin Zheng ◽  
Junhua Zhang ◽  
...  

AbstractBone is a frequent metastatic site of non-small cell lung cancer (NSCLC), and bone metastasis (BoM) presents significant challenges for patient survival and quality of life. Osteolytic BoM is characterised by aberrant differentiation and malfunction of osteoclasts through modulation of the TGF-β/pTHrP/RANKL signalling pathway, but its upstream regulatory mechanism is unclear. In this study, we found that lncRNA-SOX2OT was highly accumulated in exosomes derived from the peripheral blood of NSCLC patients with BoM and that patients with higher expression of exosomal lncRNA-SOX2OT had significantly shorter overall survival. Additionally, exosomal lncRNA-SOX2OT derived from NSCLC cells promoted cell invasion and migration in vitro, as well as BoM in vivo. Mechanistically, we discovered that NSCLC cell-derived exosomal lncRNA-SOX2OT modulated osteoclast differentiation and stimulated BoM by targeting the miRNA-194-5p/RAC1 signalling axis and TGF-β/pTHrP/RANKL signalling pathway in osteoclasts. In conclusion, exosomal lncRNA-SOX2OT plays a crucial role in promoting BoM and may serve as a promising prognostic biomarker and treatment target in metastatic NSCLC.


Drug Delivery ◽  
2021 ◽  
Vol 28 (1) ◽  
pp. 1510-1523
Author(s):  
Ying Wang ◽  
Mimi Guo ◽  
Dingmei Lin ◽  
Dajun Liang ◽  
Ling Zhao ◽  
...  

2018 ◽  
Vol 45 (6) ◽  
pp. 2213-2224 ◽  
Author(s):  
Meng Zhao ◽  
Yahui Liu ◽  
Ran Liu ◽  
Jin Qi ◽  
Yongwang Hou ◽  
...  

Background/Aims: Cytokines are key players in tumorigenesis and are potential targets in cancer treatment. Although IL-6 has attracted considerable attention, interleukin 11 (IL-11), another member of the IL-6 family, has long been overlooked, and little is known regarding its specific function in non-small cell lung cancer (NSCLC). In this study, we explored IL-11’s role in NSCLC and the detailed mechanism behind it. Methods: Cell proliferation in response to IL-11 was determined by colony formation, BrdU incorporation and MTS (3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium) assay. Cell motility was measured by Transwell and wound healing assays. NSCLC xenograft models were used to confirm oncogenic function of IL-11 in vivo. Immunohistochemical staining and western blot assay were performed to detect epithelial–mesenchymal transition (EMT) markers and cell signaling pathway alterations. Eighteen NSCLC patients and 5 normal lung samples were collected together with data from an online database to determine the link between IL-11 expression and malignant progression. Results: We observed that IL-11 was upregulated in NSCLC samples compared with normal tissue samples and correlated with poor prognosis. Data from in vitro and in vivo models indicated that IL-11 promotes cell proliferation and tumorigenesis. Cell migration and invasion were also enhanced by IL-11. Epithelial–mesenchymal transition (EMT) was also observed after IL-11 incubation. Furthermore, IL-11 activated AKT and STAT3 in our experimental models. In addition, we observed that hypoxia induced IL-11 expression in NSCLC cells. Deferoxamine (DFX) or dimethyloxalylglycine (DMOG) induced hypoxia-inducible factor 1-alpha (HIF1α) upregulation, which enhanced IL-11 expression in NSCLC cells. Conclusions: Taken together, our results indicate that IL-11 is an oncogene in NSCLC, and elucidating the mechanism behind it may provide insights for NSCLC treatment.


Sign in / Sign up

Export Citation Format

Share Document