scholarly journals Wnt Signaling in Neural Crest Ontogenesis and Oncogenesis

Cells ◽  
2019 ◽  
Vol 8 (10) ◽  
pp. 1173 ◽  
Author(s):  
Yu Ji ◽  
Hongyan Hao ◽  
Kurt Reynolds ◽  
Moira McMahon ◽  
Chengji J. Zhou

Neural crest (NC) cells are a temporary population of multipotent stem cells that generate a diverse array of cell types, including craniofacial bone and cartilage, smooth muscle cells, melanocytes, and peripheral neurons and glia during embryonic development. Defective neural crest development can cause severe and common structural birth defects, such as craniofacial anomalies and congenital heart disease. In the early vertebrate embryos, NC cells emerge from the dorsal edge of the neural tube during neurulation and then migrate extensively throughout the anterior-posterior body axis to generate numerous derivatives. Wnt signaling plays essential roles in embryonic development and cancer. This review summarizes current understanding of Wnt signaling in NC cell induction, delamination, migration, multipotency, and fate determination, as well as in NC-derived cancers.

Development ◽  
1991 ◽  
Vol 112 (1) ◽  
pp. 301-305 ◽  
Author(s):  
A. Baroffio ◽  
E. Dupin ◽  
N.M. Le Douarin

The cephalic neural crest (NC) of vertebrate embryos yields a variety of cell types belonging to the neuronal, glial, melanocytic and mesectodermal lineages. Using clonal cultures of quail migrating cephalic NC cells, we demonstrated that neurons and glial cells of the peripheral nervous system can originate from the same progenitors as cartilage, one of the mesectodermal derivatives of the NC. Moreover, we obtained evidence that the migrating cephalic NC contains a few highly multipotent precursors that are common to neurons, glia, cartilage and pigment cells and which we interprete as representative of a stem cell population. In contrast, other NC cells, although provided with identical culture conditions, give rise to clones composed of only one or some of these cell types. These cells thus appear restricted in their developmental potentialities compared to multipotent cells. It is therefore proposed that, in vivo, the active proliferation of pluripotent NC cells during the migration process generates distinct subpopulations of cells that become progressively committed to different developmental fates.


2020 ◽  
Vol 11 ◽  
Author(s):  
Subham Seal ◽  
Anne H. Monsoro-Burq

The neural crest (NC) cells and cranial placodes are two ectoderm-derived innovations in vertebrates that led to the acquisition of a complex head structure required for a predatory lifestyle. They both originate from the neural border (NB), a portion of the ectoderm located between the neural plate (NP), and the lateral non-neural ectoderm. The NC gives rise to a vast array of tissues and cell types such as peripheral neurons and glial cells, melanocytes, secretory cells, and cranial skeletal and connective cells. Together with cells derived from the cranial placodes, which contribute to sensory organs in the head, the NC also forms the cranial sensory ganglia. Multiple in vivo studies in different model systems have uncovered the signaling pathways and genetic factors that govern the positioning, development, and differentiation of these tissues. In this literature review, we give an overview of NC and placode development, focusing on the early gene regulatory network that controls the formation of the NB during early embryonic stages, and later dictates the choice between the NC and placode progenitor fates.


eLife ◽  
2018 ◽  
Vol 7 ◽  
Author(s):  
Lauren Geary ◽  
Carole LaBonne

Early vertebrate embryos possess cells with the potential to generate all embryonic cell types. While this pluripotency is progressively lost as cells become lineage restricted, Neural Crest cells retain broad developmental potential. Here, we provide novel insights into signals essential for both pluripotency and neural crest formation in Xenopus. We show that FGF signaling controls a subset of genes expressed by pluripotent blastula cells, and find a striking switch in the signaling cascades activated by FGF signaling as cells lose pluripotency and commence lineage restriction. Pluripotent cells display and require Map Kinase signaling, whereas PI3 Kinase/Akt signals increase as developmental potential is restricted, and are required for transit to certain lineage restricted states. Importantly, retaining a high Map Kinase/low Akt signaling profile is essential for establishing Neural Crest stem cells. These findings shed important light on the signal-mediated control of pluripotency and the molecular mechanisms governing genesis of Neural Crest.


Development ◽  
2000 ◽  
Vol 127 (3) ◽  
pp. 515-525 ◽  
Author(s):  
R.N. Kelsh ◽  
J.S. Eisen

Neural crest forms four major categories of derivatives: pigment cells, peripheral neurons, peripheral glia, and ectomesenchymal cells. Some early neural crest cells generate progeny of several fates. How specific cell fates become specified is still poorly understood. Here we show that zebrafish embryos with mutations in the colourless gene have severe defects in most crest-derived cell types, including pigment cells, neurons and specific glia. In contrast, craniofacial skeleton and medial fin mesenchyme are normal. These observations suggest that colourless has a key role in development of non-ectomesenchymal neural crest fates, but not in development of ectomesenchymal fates. Thus, the cls mutant phenotype reveals a segregation of ectomesenchymal and non-ectomesenchymal fates during zebrafish neural crest development. The combination of pigmentation and enteric nervous system defects makes colourless mutations a model for two human neurocristopathies, Waardenburg-Shah syndrome and Hirschsprung's disease.


Development ◽  
1988 ◽  
Vol 103 (Supplement) ◽  
pp. 95-99
Author(s):  
Jim Bee ◽  
Don Newgreen

The neural crest (NC) is derived from the ectoderm at the lateral borders of the neural plate and is first distinct during the later stages of neurulation when prospective NC cells segregate from the surrounding epidermal ectoderm and neurectoderm along the entire dorsolateral aspect of the forming and newly formed neural tube. From this origin, NC cells migrate extensive distances throughout the embryo to give rise to a large number of differentiated cell types and contribute to a diverse series of organ systems. This unique cell population therefore poses fundamental questions of the mechanisms underlying morphogenesis and differentiation during embryonic development. The developmental fate of NC cells reflects their point of origin along the anterior–posterior axis of the embryo. Of particular significance to the present volume is the major contribution of cells derived from the cephalic NC to the facial skeleton.


1992 ◽  
Vol 103 (2) ◽  
pp. 581-587
Author(s):  
A. Baroffio ◽  
M. Blot

The neural crest (NC) of vertebrate embryos yields cell types belonging to the neural, melanocytic and mesectodermal lineages. To test the possibility that the precursors of these lineages segregate from pluripotent cells by a process involving stochastic determinants, we have analyzed with statistical methods the associations between six differentiated cell types in 201 clones obtained in vitro from migrating cephalic NC cells. Our analysis suggests that neuronal, adrenergic and Schwann cells are not randomly associated, whereas these neural cell types differentiate in the clones independently of both melanocytes and cartilage. These results raise the possibility that pluripotent NC progenitors give rise to the precursors of the major NC-derived lineages (neural, melanocytic and mesectodermal) by a process involving stochastic restrictions of their developmental potentialities.


Sign in / Sign up

Export Citation Format

Share Document