scholarly journals Statistical evidence for a random commitment of pluripotent cephalic neural crest cells

1992 ◽  
Vol 103 (2) ◽  
pp. 581-587
Author(s):  
A. Baroffio ◽  
M. Blot

The neural crest (NC) of vertebrate embryos yields cell types belonging to the neural, melanocytic and mesectodermal lineages. To test the possibility that the precursors of these lineages segregate from pluripotent cells by a process involving stochastic determinants, we have analyzed with statistical methods the associations between six differentiated cell types in 201 clones obtained in vitro from migrating cephalic NC cells. Our analysis suggests that neuronal, adrenergic and Schwann cells are not randomly associated, whereas these neural cell types differentiate in the clones independently of both melanocytes and cartilage. These results raise the possibility that pluripotent NC progenitors give rise to the precursors of the major NC-derived lineages (neural, melanocytic and mesectodermal) by a process involving stochastic restrictions of their developmental potentialities.

1997 ◽  
Vol 110 (14) ◽  
pp. 1673-1682 ◽  
Author(s):  
J.G. Stone ◽  
L.I. Spirling ◽  
M.K. Richardson

The peptide endothelin 3 (EDN3) is essential for normal neural crest development in vivo, and is a potent mitogen for quail truncal crest cells in vitro. It is not known which subpopulations of crest cells are targets for this response, although it has been suggested that EDN3 is selective for melanoblasts. In the absence of cell markers for different precursor types in the quail crest, we have characterised EDN3-responsive cell types using in vitro colony assay and clonal analysis. Colonies were analysed for the presence of Schwann cells, melanocytes, adrenergic cells or sensory-like cells. We provide for the first time a description of the temporal pattern of lineage segregation in neural crest cultures. In the absence of exogenous EDN3, crest cells proliferate and then differentiate. Colony assay indicates that in these differentiated cultures few undifferentiated precursors remain and there is a low replating efficiency. By contrast, in the presence of 100 ng/ml EDN3 differentiation is inhibited and most of the cells maintain the ability to give rise to mixed colonies and clones containing neural crest derivatives. A high replating efficiency is maintained. In secondary culture there was a progressive decline in the number of cell types per colony in control medium. This loss of developmental potential was not seen when exogenous EDN3 was present. Cell type analysis suggests two novel cellular targets for EDN3 under these conditions. Contrary to expectations, one is a multipotent precursor whose descendants include melanocytes, adrenergic cells and sensory-like cells; the other can give rise to melanocytes and Schwann cells. Our data do not support previous claims that the action of EDN3 in neural crest culture is selective for cells in the melanocyte lineage.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Nadjet Gacem ◽  
Anthula Kavo ◽  
Lisa Zerad ◽  
Laurence Richard ◽  
Stephane Mathis ◽  
...  

AbstractThe neural crest gives rise to numerous cell types, dysfunction of which contributes to many disorders. Here, we report that adenosine deaminase acting on RNA (ADAR1), responsible for adenosine-to-inosine editing of RNA, is required for regulating the development of two neural crest derivatives: melanocytes and Schwann cells. Neural crest specific conditional deletion of Adar1 in mice leads to global depigmentation and absence of myelin from peripheral nerves, resulting from alterations in melanocyte survival and differentiation of Schwann cells, respectively. Upregulation of interferon stimulated genes precedes these defects, which are associated with the triggering of a signature resembling response to injury in peripheral nerves. Simultaneous extinction of MDA5, a key sensor of unedited RNA, rescues both melanocytes and myelin defects in vitro, suggesting that ADAR1 safeguards neural crest derivatives from aberrant MDA5-mediated interferon production. We thus extend the landscape of ADAR1 function to the fields of neural crest development and disease.


2006 ◽  
Vol 198 (2) ◽  
pp. 438-449 ◽  
Author(s):  
Jorge B. Aquino ◽  
Jens Hjerling-Leffler ◽  
Martin Koltzenburg ◽  
Thomas Edlund ◽  
Marcelo J. Villar ◽  
...  

Development ◽  
1990 ◽  
Vol 109 (4) ◽  
pp. 925-934 ◽  
Author(s):  
L.C. Smith-Thomas ◽  
A.R. Johnson ◽  
J.W. Fawcett

Amongst the many cell types that differentiate from migratory neural crest cells are the Schwann cells of the peripheral nervous system. While it has been demonstrated that Schwann cells will not fully differentiate unless in contact with neurons, the factors that cause neural crest cells to enter the differentiative pathway that leads to Schwann cells are unknown. In a previous paper (Development 105: 251, 1989), we have demonstrated that a proportion of morphologically undifferentiated neural crest cells express the Schwann cell markers 217c and NGF receptor, and later, as they acquire the bipolar morphology typical of Schwann cells in culture, express S-100 and laminin. In the present study, we have grown axons from embryonic retina on neural crest cultures to see whether this has an effect on the differentiation of neural crest cells into Schwann cells. After 4 to 6 days of co-culture, many more cells had acquired bipolar morphology and S-100 staining than in controls with no retinal explant, and most of these cells were within 200 microns of an axon, though not necessarily in contact with axons. However, the number of cells expressing the earliest Schwann cell markers 217c and NGF receptor was not affected by the presence of axons. We conclude that axons produce a factor, which is probably diffusible, and which makes immature Schwann cells differentiate. The factor does not, however, influence the entry of neural crest cells into the earliest stages of the Schwann cell differentiative pathway.


Development ◽  
1991 ◽  
Vol 112 (1) ◽  
pp. 301-305 ◽  
Author(s):  
A. Baroffio ◽  
E. Dupin ◽  
N.M. Le Douarin

The cephalic neural crest (NC) of vertebrate embryos yields a variety of cell types belonging to the neuronal, glial, melanocytic and mesectodermal lineages. Using clonal cultures of quail migrating cephalic NC cells, we demonstrated that neurons and glial cells of the peripheral nervous system can originate from the same progenitors as cartilage, one of the mesectodermal derivatives of the NC. Moreover, we obtained evidence that the migrating cephalic NC contains a few highly multipotent precursors that are common to neurons, glia, cartilage and pigment cells and which we interprete as representative of a stem cell population. In contrast, other NC cells, although provided with identical culture conditions, give rise to clones composed of only one or some of these cell types. These cells thus appear restricted in their developmental potentialities compared to multipotent cells. It is therefore proposed that, in vivo, the active proliferation of pluripotent NC cells during the migration process generates distinct subpopulations of cells that become progressively committed to different developmental fates.


1998 ◽  
Vol 10 (8) ◽  
pp. 535 ◽  
Author(s):  
T. A. Pelton ◽  
M. D. Bettess ◽  
J. Lake ◽  
J. Rathjen ◽  
P. D. Rathjen

Early mammalian embryogenesis is characterised by the coordinated proliferation, differentiation, migration and apoptosis of a pluripotent cell pool that is able to give rise to extraembryonic lineages and all the cell types of the embryo proper. These cells retain pluripotent differentiation capability, defined in this paper as the ability to form all cell types of the embryo and adult, until differentiation into the three embryonic germ layers at gastrulation. Our understanding of pluripotent cell biology and molecular regulation has been hampered by the difficulties associated with experimental manipulation of these cells in vivo. However, a more detailed understanding of pluripotent cell behaviour is emerging from the application of molecular technologies to early mouse embryogenesis. The construction of mouse mutants by gene targeting, mapping of gene expression in vivo, and modelling of cell decisions in vitro are providing insight into the cellular origin, identity and action of key developmental regulators, and the nature of pluripotent cells themselves. In this review we discuss the properties of early embryonic pluripotent cells in vitro and in vivo, focusing on progression from inner cell mass (ICM) cells in the blastocyst to the onset of gastrulation.


2012 ◽  
Vol 2012 ◽  
pp. 1-9 ◽  
Author(s):  
Maria J. Barrero

For many years scientists have been attracted to the possibility of changing cell identity. In the last decades seminal discoveries have shown that it is possible to reprogram somatic cells into pluripotent cells and even to transdifferentiate one cell type into another. In view of the potential applications that generating specific cell types in the laboratory can offer for cell-based therapies, the next important questions relate to the quality of the induced cell types. Importantly, epigenetic aberrations in reprogrammed cells have been correlated with defects in differentiation. Therefore, a look at the epigenome and understanding how different regulators can shape it appear fundamental to anticipate potential therapeutic pitfalls. This paper covers these epigenetic aspects in stem cells, differentiation, and reprogramming and discusses their importance for the safety of in vitro engineered cell types.


Cells ◽  
2019 ◽  
Vol 8 (10) ◽  
pp. 1173 ◽  
Author(s):  
Yu Ji ◽  
Hongyan Hao ◽  
Kurt Reynolds ◽  
Moira McMahon ◽  
Chengji J. Zhou

Neural crest (NC) cells are a temporary population of multipotent stem cells that generate a diverse array of cell types, including craniofacial bone and cartilage, smooth muscle cells, melanocytes, and peripheral neurons and glia during embryonic development. Defective neural crest development can cause severe and common structural birth defects, such as craniofacial anomalies and congenital heart disease. In the early vertebrate embryos, NC cells emerge from the dorsal edge of the neural tube during neurulation and then migrate extensively throughout the anterior-posterior body axis to generate numerous derivatives. Wnt signaling plays essential roles in embryonic development and cancer. This review summarizes current understanding of Wnt signaling in NC cell induction, delamination, migration, multipotency, and fate determination, as well as in NC-derived cancers.


eLife ◽  
2018 ◽  
Vol 7 ◽  
Author(s):  
Lauren Geary ◽  
Carole LaBonne

Early vertebrate embryos possess cells with the potential to generate all embryonic cell types. While this pluripotency is progressively lost as cells become lineage restricted, Neural Crest cells retain broad developmental potential. Here, we provide novel insights into signals essential for both pluripotency and neural crest formation in Xenopus. We show that FGF signaling controls a subset of genes expressed by pluripotent blastula cells, and find a striking switch in the signaling cascades activated by FGF signaling as cells lose pluripotency and commence lineage restriction. Pluripotent cells display and require Map Kinase signaling, whereas PI3 Kinase/Akt signals increase as developmental potential is restricted, and are required for transit to certain lineage restricted states. Importantly, retaining a high Map Kinase/low Akt signaling profile is essential for establishing Neural Crest stem cells. These findings shed important light on the signal-mediated control of pluripotency and the molecular mechanisms governing genesis of Neural Crest.


eLife ◽  
2018 ◽  
Vol 7 ◽  
Author(s):  
Thomas JR Frith ◽  
Ilaria Granata ◽  
Matthew Wind ◽  
Erin Stout ◽  
Oliver Thompson ◽  
...  

The neural crest (NC) is a multipotent embryonic cell population that generates distinct cell types in an axial position-dependent manner. The production of NC cells from human pluripotent stem cells (hPSCs) is a valuable approach to study human NC biology. However, the origin of human trunk NC remains undefined and current in vitro differentiation strategies induce only a modest yield of trunk NC cells. Here we show that hPSC-derived axial progenitors, the posteriorly-located drivers of embryonic axis elongation, give rise to trunk NC cells and their derivatives. Moreover, we define the molecular signatures associated with the emergence of human NC cells of distinct axial identities in vitro. Collectively, our findings indicate that there are two routes toward a human post-cranial NC state: the birth of cardiac and vagal NC is facilitated by retinoic acid-induced posteriorisation of an anterior precursor whereas trunk NC arises within a pool of posterior axial progenitors.


Sign in / Sign up

Export Citation Format

Share Document