scholarly journals Oocyte Maturation in Starfish

Cells ◽  
2020 ◽  
Vol 9 (2) ◽  
pp. 476
Author(s):  
Kazuyoshi Chiba

Oocyte maturation is a process that occurs in the ovaries, where an immature oocyte resumes meiosis to attain competence for normal fertilization after ovulation/spawning. In starfish, the hormone 1-methyladenine binds to an unidentified receptor on the plasma membrane of oocytes, inducing a conformational change in the heterotrimeric GTP-binding protein α-subunit (Gα), so that the α-subunit binds GTP in exchange of GDP on the plasma membrane. The GTP-binding protein βγ-subunit (Gβγ) is released from Gα, and the released Gβγ activates phosphatidylinositol-3 kinase (PI3K), followed by the target of rapamycin kinase complex2 (TORC2) and 3-phosphoinositide-dependent protein kinase 1 (PDK1)-dependent phosphorylation of serum- and glucocorticoid-regulated kinase (SGK) of ovarian oocytes. Thereafter, SGK activates Na+/H+ exchanger (NHE) to increase the intracellular pH (pHi) from ~6.7 to ~6.9. Moreover, SGK phosphorylates Cdc25 and Myt1, thereby inducing the de-phosphorylation and activation of cyclin B–Cdk1, causing germinal vesicle breakdown (GVBD). Both pHi increase and GVBD are required for spindle assembly at metaphase I, followed by MI arrest at pHi 6.9 until spawning. Due to MI arrest or SGK-dependent pHi control, spawned oocytes can be fertilized normally

1992 ◽  
Vol 281 (2) ◽  
pp. 325-331 ◽  
Author(s):  
E Corvazier ◽  
J Enouf ◽  
B Papp ◽  
J de Gunzburg ◽  
A Tavitian ◽  
...  

The relationship between the 22-24 kDa cyclic AMP (cAMP)-dependent phosphoprotein previously described as being involved in the regulation of human platelet membrane Ca2+ transport and a GTP-binding protein of low molecular mass (ras-like protein) was investigated. After isolation of plasma membranes and intracellular membranes, it was found that guanosine 5′-[gamma-thio]triphosphate (GTP[S]) bound to plasma membrane proteins ranging in molecular mass from 22 to 29 kDa, but not to intracellular membranes. The major GTP-binding protein appeared as a 24 kDa protein under reduced conditions and a 22 kDa protein under non-reduced conditions. A similar membrane location and electrophoretic mobility were found for both the cAMP phosphoprotein and the protein recognized by a specific anti-rap1 antibody. The identity between the cAMP phosphoprotein and the rap1 GTP-binding protein was further examined by studying the functional effect of GTP on plasma membrane Ca2+ transport. A maximal GTP[S] concentration of 40 microM was found to: (1) inhibit to the same degree (40%) both Ca(2+)-ATPase activity and the Ca2+ transport function mediated by the Ca(2+)-ATPase; (2) inhibit the phosphorylation of the 22-24 kDa protein by the catalytic subunit of the cAMP-dependent protein kinase (C.Sub.); and (3) abolish the stimulation of Ca2+ uptake induced by C.Sub. It is concluded that the platelet cAMP phosphoprotein is indeed the rap1 GTP-binding protein, and that it regulates plasma membrane Ca2+ transport, thus providing evidence for a new role of a ras-related protein.


1994 ◽  
Vol 124 (1) ◽  
pp. 43-53 ◽  
Author(s):  
BP Jena ◽  
FD Gumkowski ◽  
EM Konieczko ◽  
GF von Mollard ◽  
R Jahn ◽  
...  

Regulated secretion from pancreatic acinar cells occurs by exocytosis of zymogen granules (ZG) at the apical plasmalemma. ZGs originate from the TGN and undergo prolonged maturation and condensation. After exocytosis, the zymogen granule membrane (ZGM) is retrieved from the plasma membrane and ultimately reaches the TGN. In this study, we analyzed the fate of a low M(r) GTP-binding protein during induced exocytosis and membrane retrieval using immunoblots as well as light and electron microscopic immunocytochemistry. This 27-kD protein, identified by a monoclonal antibody that recognizes rab3A and B, may be a novel rab3 isoform. In resting acinar cells, the rab3-like protein was detected primarily on the cytoplasmic face of ZGs, with little labeling of the Golgi complex and no significant labeling of the apical plasmalemma or any other intracellular membranes. Stimulation of pancreatic lobules in vitro by carbamylcholine for 15 min, resulted in massive exocytosis that led to a near doubling of the area of the apical plasma membrane. However, no relocation of the rab3-like protein to the apical plasmalemma was seen. After 3 h of induced exocytosis, during which time approximately 90% of the ZGs is released, the rab3-like protein appeared to translocate to small vesicles and newly forming secretory granules in the TGN. No significant increase of the rab3-like protein was found in the cytosolic fraction at any time during stimulation. Since the protein is not detected on the apical plasmalemma after stimulation, we conclude that recycling may involve a membrane dissociation-association cycle that accompanies regulated exocytosis.


1988 ◽  
Vol 152 (1) ◽  
pp. 243-251 ◽  
Author(s):  
Hayley McArdle ◽  
Ian Mullaney ◽  
Anthony Magee ◽  
Cecilia Unson ◽  
Graeme Milligan

Cell ◽  
1988 ◽  
Vol 53 (5) ◽  
pp. 753-768 ◽  
Author(s):  
Bruno Goud ◽  
Antti Salminen ◽  
Nancy C. Walworth ◽  
Peter J. Novick

2000 ◽  
Vol 275 (10) ◽  
pp. 7167-7175 ◽  
Author(s):  
Makoto Kanzaki ◽  
Robert T. Watson ◽  
Nikolai O. Artemyev ◽  
Jeffrey E. Pessin

1994 ◽  
Vol 127 (6) ◽  
pp. 1575-1588 ◽  
Author(s):  
O Martinez ◽  
A Schmidt ◽  
J Salaméro ◽  
B Hoflack ◽  
M Roa ◽  
...  

Rab6 is a ubiquitous ras-like GTP-binding protein associated with the membranes of the Golgi complex (Goud, B., A. Zahraoui, A. Tavitian, and J. Saraste. 1990. Nature (Lond.). 345:553-556; Antony, C., C. Cibert, G. Géraud, A. Santa Maria, B. Maro, V. Mayau, and B. Goud. 1992. J. Cell Sci. 103: 785-796). We have transiently overexpressed in mouse L cells and human HeLa cells wild-type rab6, GTP (rab6 Q72L), and GDP (rab6 T27N) -bound mutants of rab6 and analyzed the intracellular transport of a soluble secreted form of alkaline phosphatase (SEAP) and of a plasma membrane protein, the hemagglutinin protein (HA) of influenza virus. Over-expression of wild-type rab6 and rab6 Q72L greatly reduced transport of both markers between cis/medial (alpha-mannosidase II positive) and late (sialyl-transferase positive) Golgi compartments, without affecting transport from the endoplasmic reticulum (ER) to cis/medial-Golgi or from the trans-Golgi network (TGN) to the plasma membrane. Whereas overexpression of rab6 T27N did not affect the individual steps of transport between ER and the plasma membrane, it caused an apparent delay in secretion, most likely due to the accumulation of the transport markers in late Golgi compartments. Overexpression of both rab6 Q72L and rab6 T27N altered the morphology of the Golgi apparatus as well as that of the TGN, as assessed at the immunofluorescence level with several markers. We interpret these results as indicating that rab6 controls intra-Golgi transport, either acting as an inhibitor in anterograde transport or as a positive regulator of retrograde transport.


Sign in / Sign up

Export Citation Format

Share Document