scholarly journals Influence of the Emulsifier System on Breakup and Coalescence of Oil Droplets during Atomization of Oil-In-Water Emulsions

2020 ◽  
Vol 4 (3) ◽  
pp. 47
Author(s):  
Martha Taboada ◽  
Nico Leister ◽  
Heike Karbstein ◽  
Volker Gaukel

Spray drying of whey protein-based emulsions is a common task in food engineering. Lipophilic, low molecular weight emulsifiers including lecithin, citrem, and mono- and diglycerides, are commonly added to the formulations, as they are expected to improve the processing and shelf life stability of the products. During the atomization step of spray drying, the emulsions are subjected to high stresses, which can lead to breakup and subsequent coalescence of the oil droplets. The extent of these phenomena is expected to be greatly influenced by the emulsifiers in the system. The focus of this study was therefore set on the changes in the oil droplet size of whey protein-based emulsions during atomization, as affected by the addition of low molecular weight emulsifiers. Atomization experiments were performed with emulsions stabilized either with whey protein isolate (WPI), or with combinations of WPI and lecithin, WPI and citrem, and WPI and mono- and diglycerides. The addition of lecithin promoted oil droplet breakup during atomization and improved droplet stabilization against coalescence. The addition of citrem and of mono- and diglycerides did not affect oil droplet breakup, but greatly promoted coalescence of the oil droplets. In order to elucidate the underlying mechanisms, measurements of interfacial tensions and coalescence times in single droplets experiments were performed and correlated to the atomization experiments. The results on oil droplet breakup were in good accordance with the observed differences in the interfacial tension measurements. The results on oil droplet coalescence correlated only to a limited extent with the results of coalescence times of single droplet experiments.

Author(s):  
Martha L. Taboada ◽  
Doll Chutani ◽  
Heike P. Karbstein ◽  
Volker Gaukel

AbstractThe goal of this study was to investigate the changes in oil droplet size in whey protein–stabilized emulsions during the atomization and the subsequent drying step of a spray drying process. For this purpose, experiments were performed in an atomization rig and a pilot spray dryer with two commercial pressure swirl atomizers. By comparing the oil droplet size before atomization, after atomization, and after spray drying, the changes in oil droplet size during each process step were quantified. The effect of oil droplet breakup during atomization was isolated by atomizing emulsions with 1 wt.% oil content and a protein to oil concentration ratio of 0.1. At 100 bar, the Sauter mean diameter of oil droplet size was reduced from 3.13 to 0.61 μm. Directly after breakup, coalescence of the oil droplets was observed for emulsions with a high oil content of 30 wt.%, leading to a droplet size after atomization of 1.15 μm. Increasing the protein to oil concentration ratio to 0.2 reduced coalescence during atomization and oil droplets with a mean diameter of 0.92 μm were obtained. Further coalescence was observed during the drying step: for an oil content of 30 wt.% and a protein to oil concentration ratio of 0.1 the mean droplet size increased to 1.77 μm. Powders produced at high oil contents showed a strong tendency to clump. Comparable effects were observed for a spray drying process with a different nozzle at 250 bar. The results confirm that droplet breakup and coalescence during atomization and coalescence during drying have to be taken into consideration when targeting specific oil droplet sizes in the product. This is relevant for product design in spray drying applications, in which the oil droplet size in the powder or after its redispersion determines product quality and stability.


2017 ◽  
Vol 12 (3-4) ◽  
pp. 218-225 ◽  
Author(s):  
A. L. Zernov ◽  
A. P. Bonartsev ◽  
S. G. Yakovlev ◽  
V. L. Myshkina ◽  
T. K. Makhina ◽  
...  

2010 ◽  
Vol 5 (2) ◽  
pp. 128-137 ◽  
Author(s):  
Mithila Jayasundera ◽  
Benu P. Adhikari ◽  
Raju Adhikari ◽  
Peter Aldred

2016 ◽  
Vol 169 ◽  
pp. 189-195 ◽  
Author(s):  
Wenjie Liu ◽  
Xiao Dong Chen ◽  
Zeneng Cheng ◽  
Cordelia Selomulya

Sign in / Sign up

Export Citation Format

Share Document