scholarly journals Colorimetric Sensing of Benzoyl Peroxide Based on the Emission Wavelength-Shift of CsPbBr3 Perovskite Nanocrystals

Chemosensors ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 319
Author(s):  
Li Zhang ◽  
Yimeng Zhu ◽  
Feiming Li ◽  
Linchun Zhang ◽  
Longjie You ◽  
...  

Using the ionic salt characteristics of CsPbBr3 perovskite nanocrystals (CsPbBr3 NCs), the fluorescence wavelength of CsPbBr3−xIx NCs could be changed by the halogen exchange reaction between CsPbBr3 NCs and oleylammonium iodide (OLAM-I). Under the excitation of a 365 nm UV lamp and the increase of OLAM-I concentration, the content of iodine in CsPbBr3−xIx NCs increased, and the fluorescence emission wavelength showed a redshift from 511.6 nm to 593.4 nm, resulting in the fluorescence color change of CsPbBr3 NCs from green to orange-red. Since OLAM-I is a mild reducing agent and easily oxidized by benzoyl peroxide (BPO), a novel colorimetric sensing approach for BPO based on the fluorescence wavelength shift was established in this study. The linear relationship between the different wavelength shifts (Δλ) and the concentration of BPO (CBPO) is found to be in the range of 0 to 120 μmol L−1. The coefficient of alteration (R2) and the detection limit are 0.9933 and 0.13 μmol L−1 BPO, respectively. With this approach, the determination procedure of BPO in flour and noodle samples can be achieved in only a few minutes and exhibit high sensitivity and selectivity.

2019 ◽  
Vol 2019 ◽  
pp. 1-9 ◽  
Author(s):  
Xiaotian Zhu ◽  
Chang Liu ◽  
Jie Liu

A new colorimetric assay for the detection of sulfide anions with high sensitivity and selectivity is reported, utilizing Au-Hg alloy nanorods (Au-HgNRs) as probe. Au-HgNRs were prepared by modifying gold nanorods (AuNRs) with reducing agent and mercury ions. In an aqueous solution with sulfide anions, the formation of mercuric sulfide due to redox reaction between the amalgams and sulfide anions greatly changed the surface chemistry and morphology of the Au-HgNRs, leading to a red shift of the localized surface plasmon resonance (LSPR) absorption peak, accompanied by a change in colorimetric response. A good linear relationship was obtained between the LSPR peak wavelength shift and concentration of sulfide anion in the range of 1 × 10−5−1 × 10−4 mol/L. The selectivity of this method has been investigated by other anions. The colorimetric sensing system successfully detected sulfide in wastewater from leather industry.


2017 ◽  
Vol 17 (2) ◽  
pp. 238
Author(s):  
Agustina Eka Prestiani ◽  
Bambang Purwono

A novel styrene (1) and azo-styrene (2) based chemosensor from vanillin has been successfully synthesized. Sensor 1 was obtained by one step Knoevenagel condensation of Ultrasound method and sensor 2 by coupling diazo and Knoevenagel condensation reaction. Both of sensors showed high sensitivity and selectivity to detect CN- in aqueous media, even the presence of other anions, such as F-, Cl-, Br-, I-, CO32-, SO42-, H2PO4-, and AcO-. Colorimetric sensing of sensor 1 is inclined to be deprotonating of sensor binding site in the presence of cyanide and consequently improve the selectivity and sensitivity in sensing cyanide which displayed color change of sensor from yellowness to red-purple and then purple in 1 min. Sensor 2 exhibited chemodosimeter phenomenon which is caused by the nucleophilic addition of cyanide with a colour change from green to greenish-blue. The results enable to do an anion detection by a naked eye.


The Analyst ◽  
2021 ◽  
Author(s):  
Stephanie K. Loeb ◽  
Haoran Wei ◽  
Jae-Hong Kim

The fluorescence emission wavelength shift of CdSe quantum dots due to heat-induced lattice dilatation is used to spatially resolve temperatures in solar photothermal systems.


2021 ◽  
Vol 21 (8) ◽  
pp. 4400-4405
Author(s):  
Junyeop Lee ◽  
Nam Gon Do ◽  
Dong Hyuk Jeong ◽  
Sae-Wan Kim ◽  
Maeum Han ◽  
...  

Carbon monoxide (CO) is an odorless, colorless, tasteless, extremely flammable, and highly toxic gas. It is produced when there is insufficient oxygen supply during the combustion of carbon to produce carbon dioxide (CO2). CO is produced from operating engines, stoves, or furnaces. CO poisoning occurs when CO accumulates in the bloodstream and can result in severe tissue damage or even death. Many types of CO sensors have been reported, including electrochemical, semiconductor metal-oxide, catalytic combustion, thermal conductivity, and infrared absorption-type for the detection of CO. However, despite their excellent selectivity and sensitivity, issues such as complexity, power consumption, and calibration limit their applications. In this study, a fabricbased colorimetric CO sensor is proposed to address these issues. Potassium disulfitopalladate (II) (K2Pd(SO3)2) is dyed on a polyester fabric as a sensing material for selective CO detection. The sensing characteristics and performance are investigated using optical instruments such as RGB sensor and spectrometer. The sensor shows immediate color change when exposed to CO at a concentration that is even lower than 20 ppm before 2 min. The fast response time of the sensor is attributed to its high porosity to react with CO. This easy-to-fabricate and cost-effective sensor can detect and prevent the leakage of CO simultaneously with high sensitivity and selectivity toward CO.


RSC Advances ◽  
2015 ◽  
Vol 5 (81) ◽  
pp. 66416-66419 ◽  
Author(s):  
Ivan Zhang ◽  
Yi Wang ◽  
Chao Wan ◽  
Zhen Xing ◽  
Wen Li ◽  
...  

A new spirocyclic rhodamine derivative for colorimetric sensing of Ni2+.


Polymers ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 1655 ◽  
Author(s):  
Mingyuan Yin ◽  
Caiyun Zhang ◽  
Jing Li ◽  
Haijie Li ◽  
Qiliang Deng ◽  
...  

The method capable of rapid and sensitive detection of benzoyl peroxide (BPO) is necessary and receiving increasing attention. In consideration of the vast signal amplification of fluorescent conjugated polymers (FCPs) for high sensitivity detection and the potential applications of boron-containing materials in the emerging sensing fields, the organoboron FCPs, poly (3-aminophenyl boronic acid) (PABA) is directly synthesized via free-radical polymerization reaction by using the commercially available 3-aminophenyl boronic acid (ABA) as the functional monomer and ammonium persulfate as the initiator. PABA is employed as a fluorescence sensor for sensing of trace BPO based on the formation of charge-transfer complexes between PABA and BPO. The fluorescence emission intensity of PABA demonstrates a negative correlation with the concentration of BPO. And a linear range of 8.26 × 10−9 M–8.26 × 10–4 M and a limit of detection of 1.06 × 10–9 M as well as a good recovery (86.25%–111.38%) of BPO in spiked real samples (wheat flour and antimicrobial agent) are obtained. The proposed sensor provides a promising prospective candidate for the rapid detection and surveillance of BPO.


2019 ◽  
Vol 91 (22) ◽  
pp. 14183-14187 ◽  
Author(s):  
Yimeng Zhu ◽  
Feiming Li ◽  
Yipeng Huang ◽  
Fangyuan Lin ◽  
Xi Chen

Polymers ◽  
2018 ◽  
Vol 10 (11) ◽  
pp. 1259 ◽  
Author(s):  
Bo-Yu Chen ◽  
Yen-Chen Lung ◽  
Chi-Ching Kuo ◽  
Fang-Cheng Liang ◽  
Tien-Liang Tsai ◽  
...  

Novel multifunctional fluorescent chemosensors composed of electrospun (ES) nanofibers with high sensitivity toward pH, mercury ions (Hg2+), and temperature were prepared from poly(N-Isopropylacrylamide-co-N-methylolacrylamide-co-rhodamine derivative) (poly(NIPAAm-co-NMA-co-RhBN2AM)) by employing an electrospinning process. NIPAAm and NMA moieties provide hydrophilic and thermo-responsive properties (absorption of Hg2+ in aqueous solutions), and chemical cross-linking sites (stabilization of the fibrous structure in aqueous solutions), respectively. The fluorescent probe, RhBN2AM is highly sensitive toward pH and Hg2+. The synthesis of poly(NIPAAm-co-NMA-co-RhBN2AM) with different compositions was carried on via free-radical polymerization. ES nanofibers prepared from sensory copolymers with a 71.1:28.4:0.5 NIPAAm:NMA:RhBN2AM ratio (P3 ES nanofibers) exhibited significant color change from non-fluorescent to red fluorescence while sensing pH (the λPL, max exhibited a 4.8-fold enhancement) or Hg2+ (at a constant Hg2+ concentration (10−3 M), the λPL, max of P3-fibers exhibited 4.7-fold enhancement), and high reversibility of on/off switchable fluorescence emission at least five times when Hg2+ and ethylenediaminetetraacetic acid (EDTA) were sequentially added. The P3 ES nanofibrous membranes had a higher surface-to-volume ratio to enhance their performance than did the corresponding thin films. In addition, the fluorescence emission of P3 ES nanofibrous membranes exhibited second enhancement above the lower critical solution temperature. Thus, the ES nanofibrous membranes prepared from P3 with on/off switchable capacity and thermo-responsive characteristics can be used as a multifunctional sensory device for specific heavy transition metal (HTM) in aqueous solutions.


2019 ◽  
Vol 11 (29) ◽  
pp. 3706-3713 ◽  
Author(s):  
Mohammed Awad Abedalwafa ◽  
Yan Li ◽  
Chunfang Ni ◽  
Gang Yang ◽  
Lu Wang

Non-enzymatic colorimetric sensor strip for detection of metronidazole (MTZ) was designed and constructed, with high sensitivity and selectivity. Which can be used for naked-eye detection of MTZ with a visible color change from pink to purple.


Sign in / Sign up

Export Citation Format

Share Document