scholarly journals Integrated and Metal Free Synthesis of Dimethyl Carbonate and Glycidol from Glycerol Derived 1,3-Dichloro-2-propanol via CO2 Capture

2021 ◽  
Vol 3 (4) ◽  
pp. 685-698
Author(s):  
Santosh Khokarale ◽  
Ganesh Shelke ◽  
Jyri-Pekka Mikkola

Dimethyl carbonate (DMC) and glycidol are considered industrially important chemical entities and there is a great benefit if these moieties can be synthesized from biomass-derived feedstocks such as glycerol or its derivatives. In this report, both DMC and glycidol were synthesized in an integrated process from glycerol derived 1,3-dichloro-2-propanol and CO2 through a metal-free reaction approach and at mild reaction conditions. Initially, the chlorinated cyclic carbonate, i.e., 3-chloro-1,2-propylenecarbonate was synthesized using the equivalent interaction of organic superbase 1,8-diazabicyclo [5.4.0] undec-7-ene (DBU) and 1,3-dichloro-2-propanol with CO2 at room temperature. Further, DMC and glycidol were synthesized by the base-catalyzed transesterification of 3-chloro-1,2-propylenecarbonate using DBU in methanol. The synthesis of 3-chloro-1,2-propylenecarbonate was performed in different solvents such as dimethyl sulfoxide (DMSO) and 2-methyltetrahydrofuran (2-Me-THF). In this case, 2-Me-THF further facilitated an easy separation of the product where a 97% recovery of the 3-chloro-1,2-propylenecarbonate was obtained compared to 63% with DMSO. The use of DBU as the base in the transformation of 3-chloro-1,2-propylenecarbonate further facilitates the conversion of the 3-chloro-1,2 propandiol that forms in situ during the transesterification process. Hence, in this synthetic approach, DBU not only eased the CO2 capture and served as a base catalyst in the transesterification process, but it also performed as a reservoir for chloride ions, which further facilitates the synthesis of 3-chloro-1,2-propylenecarbonate and glycidol in the overall process. The separation of the reaction components proceeded through the solvent extraction technique where a 93 and 89% recovery of the DMC and glycidol, respectively, were obtained. The DBU superbase was recovered from its chlorinated salt, [DBUH][Cl], via a neutralization technique. The progress of the reactions as well as the purity of the recovered chemical species was confirmed by means of the NMR analysis technique. Hence, a single base, as well as a renewable solvent comprising an integrated process approach was carried out under mild reaction conditions where CO2 sequestration along with industrially important chemicals such as dimethyl carbonate and glycidol were synthesized.

2020 ◽  
Vol 1 (3) ◽  
pp. 298-314
Author(s):  
Santosh Govind Khokarale ◽  
Thai Q. Bui ◽  
Jyri-Pekka Mikkola

Herein, we report on the metal-free, one-pot synthesis of industrially important dimethyl carbonate (DMC) from molecular CO2 under ambient conditions. In this process, initially the CO2 was chemisorbed through the formation of a switchable ionic liquid (SIL), [DBUH] [CH3CO3], by the interaction of CO2 with an equivalent mixture of organic superbase 1,8-diazabicyclo-[5.4.0]-undec-7-ene (DBU) and methanol. The obtained SIL further reacted with methyl iodide (CH3I) to form DMC. The synthesis was carried out in both dimethyl sulfoxide (DMSO) and methanol. Methanol is preferred, as it not only served as a reagent and solvent in CO2 capture and DMC synthesis, but it also assisted in controlling the side reactions between chemical species such as CH3I and [DBUH]+ cation and increased the yield of DMC. Hence, the use of methanol avoided the loss of captured CO2 and favored the formation of DMC with high selectivity. Under the applied reaction conditions, 89% of the captured CO2 was converted to DMC. DBU was obtained, achieving 86% recovery of its salts formed during the synthesis. Most importantly, in this report we describe a simple and renewable solvent-based process for a metal-free approach to DMC synthesis under industrially feasible reaction conditions.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Ferenc Béke ◽  
Ádám Mészáros ◽  
Ágnes Tóth ◽  
Bence Béla Botlik ◽  
Zoltán Novák

AbstractRegioselective vicinal diamination of carbon–carbon double bonds with two different amines is a synthetic challenge under transition metal-free conditions, especially for the synthesis of trifluoromethylated amines. However, the synthesis of ethylene diamines and fluorinated amine compounds is demanded, especially in the pharmaceutical sector. Herein, we demonstrate that the controllable double nucleophilic functionalization of an activated alkene synthon, originated from a trifluoropropenyliodonium salt with two distinct nucleophiles, enables the selective synthesis of trifluoromethylated ethylene amines and diamines on broad scale with high efficiency under mild reaction conditions. Considering the chemical nature of the reactants, our synthetic approach brings forth an efficient methodology and provides versatile access to highly fluorinated amines.


2020 ◽  
Vol 24 ◽  
Author(s):  
Bubun Banerjee ◽  
Gurpreet Kaur ◽  
Navdeep Kaur

: Metal-free organocatalysts are becoming an important tool for the sustainable developments of various bioactive heterocycles. On the other hand, during last two decades, calix[n]arenes have been gaining considerable attention due to their wide range of applicability in the field of supramolecular chemistry. Recently, sulfonic acid functionalized calix[n] arenes are being employed as an efficient alternative catalyst for the synthesis of various bioactive scaffolds. In this review we have summarized the catalytic efficiency of p-sulfonic acid calix[n]arenes for the synthesis of diverse biologically promising scaffolds under various reaction conditions. There is no such review available in the literature showing the catalytic applicability of p-sulfonic acid calix[n]arenes. Therefore, we strongly believe that this review will surely attract those researchers who are interested about this fascinating organocatalyst.


2021 ◽  
Vol 19 (1) ◽  
pp. 273-278
Author(s):  
Göran Schulz ◽  
Andreas Kirschning

The oxidative radical decarboxylation of carboxylic acids with TEMPO as radical scavenger in a biphasic solvent system is reported which is successfully used in a new synthetic approach for the antidepressants indatraline.


Synthesis ◽  
2020 ◽  
Author(s):  
Peter Ehlers ◽  
Peter Langer ◽  
Marian Blanco Ponce ◽  
Silvio Parpart ◽  
Alexander Villinger ◽  
...  

AbstractA concise and modular synthesis of pyrrolo[1,2-a][1,6]- and [1,8]naphthyridines by a one-pot two-step reaction consisting of electrophilic acylation followed by an alkyne-carbonyl-metathesis reaction as the final cyclization step is reported. This developed synthetic methodology allows the facile synthesis of these heterocyclic core structures in mainly high overall yields under metal-free conditions. Reaction conditions are carefully optimized and display a novel supplement to access these tricyclic heterocyclic compounds.


Molecules ◽  
2021 ◽  
Vol 26 (13) ◽  
pp. 4097
Author(s):  
Wooyong Seong ◽  
Hyungwoo Hahm ◽  
Seyong Kim ◽  
Jongwoo Park ◽  
Khalil A. Abboud ◽  
...  

Bimetallic bis-urea functionalized salen-aluminum catalysts have been developed for cyclic carbonate synthesis from epoxides and CO2. The urea moiety provides a bimetallic scaffold through hydrogen bonding, which expedites the cyclic carbonate formation reaction under mild reaction conditions. The turnover frequency (TOF) of the bis-urea salen Al catalyst is three times higher than that of a μ-oxo-bridged catalyst, and 13 times higher than that of a monomeric salen aluminum catalyst. The bimetallic reaction pathway is suggested based on urea additive studies and kinetic studies. Additionally, the X-ray crystal structure of a bis-urea salen Ni complex supports the self-assembly of the bis-urea salen metal complex through hydrogen bonding.


Synthesis ◽  
2019 ◽  
Vol 52 (01) ◽  
pp. 69-74
Author(s):  
Yuan-Zhao Ji ◽  
Hui-Jing Li ◽  
Ying Liu ◽  
Yan-Chao Wu

It has been reported previously that treatment of aryl­ketone-derived arylsulfonylhydrazones with NXS/(nBu)4NX affords exclusively vinyl halides. In contrast, we have found that treatment of aryl­aldehyde-derived arylsulfonylhydrazones with N-chlorosuccinimide in the presence of potassium hydroxide affords 1,2,4,5-tetrazine derivatives in good to excellent yields. The present reactions are carried out under metal-free and mild reaction conditions.


2020 ◽  
Vol 22 (14) ◽  
pp. 4550-4560
Author(s):  
Wenjuan Fang ◽  
Zhencai Zhang ◽  
Zifeng Yang ◽  
Yaqin Zhang ◽  
Fei Xu ◽  
...  

A synthetic strategy for bio-based polycarbonate was developed via one-pot polymerization of renewable monomer isosorbide and dimethyl carbonate using eco-friendly organo-catalysts.


2021 ◽  
pp. 1-10
Author(s):  
Pawan K. Sharma ◽  
Rajiv Kumar ◽  
Sita Ram ◽  
Navneet Chandak

Author(s):  
N Holanda ◽  
N Drake ◽  
W J B Corradi ◽  
F A Ferreira ◽  
F Maia ◽  
...  

Abstract We present the results of a chemical analysis of fast and anomalous rotator giants members of the young open cluster NGC 6124. For this purpose, we carried out abundances of the mixing sensitive species such as Li, C, N, Na and 12C/13C isotopic ratio, as well as other chemical species for a sample of four giants among the seven observed ones. This study is based on standard spectral analysis technique using high-resolution spectroscopic data. We also performed an investigation of the rotational velocity (v sin  i) once this sample exhibit abnormal values – giant stars commonly present rotational velocities of few km s−1. In parallel, we have been performed a membership study, making use of the third data release from ESA Gaia mission. Based on these data, we estimated a distance of d = 630 pc and an age of 178 Myr through isochrone fitting. After that procedure, we matched all the information raised and investigated the evolutionary stages and thermohaline mixing model through of spectroscopic Teff and log  g and mixing tracers, as 12C/13C and Na, of the studied stars. We derived a low mean metallicity of [Fe/H] = −0.13 ±0.05 and a modest enhancement of the elements created by the s-process such as Y, Zr, La, Ce, and Nd, which is in agreement of what has already been reported in the literature for young clusters. The giants analyzed have homogeneous abundances, except for lithium abundance [log  ε(Li)NLTE = 1.08±0.42] and this may be associated to a combination of mechanisms that act increasing or decreasing lithium abundances in stellar atmospheres.


Sign in / Sign up

Export Citation Format

Share Document