scholarly journals Impact of Urbanization on Urban Heat Island Intensity in Major Districts of Bangladesh Using Remote Sensing and Geo-Spatial Tools

Climate ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 3
Author(s):  
Md. Naimur Rahman ◽  
Md. Rakib Hasan Rony ◽  
Farhana Akter Jannat ◽  
Subodh Chandra Pal ◽  
Md. Saiful Islam ◽  
...  

Urbanization is closely associated with land use land cover (LULC) changes that correspond to land surface temperature (LST) variation and urban heat island (UHI) intensity. Major districts of Bangladesh have a large population base and commonly lack the resources to manage fast urbanization effects, so any rise in urban temperature influences the population both directly and indirectly. However, little is known about the impact of rapid urbanization on UHI intensity variations during the winter dry period in the major districts of Bangladesh. To this end, we aim to quantify spatiotemporal associations of UHI intensity during the winter period between 2000 and 2019 using remote-sensing and geo-spatial tools. Landsat-8 and Landsat-5 imageries of these major districts during the dry winter period from 2000 to 2020 were used for this purpose, with overall precision varying from 81% to 93%. The results of LULC classification and LST estimation showed the existence of multiple UHIs in all major districts, which showed upward trends, except for the Rajshahi and Rangpur districts. A substantial increase in urban expansion was observed in Barisal > 32%, Mymensingh > 18%, Dhaka > 17%, Chattogram > 14%, and Rangpur > 13%, while a significant decrease in built-up areas was noticed in Sylhet < −1.45% and Rajshahi < −3.72%. We found that large districts have greater UHIs than small districts. High UHI intensities were observed in Mymensingh > 10 °C, Chattogram > 9 °C, and Barisal > 8 °C compared to other districts due to dense population and unplanned urbanization. We identified higher LST (hotspots) zones in all districts to be increased with the urban expansion and bare land. The suburbanized strategy should prioritize the restraint of the high intensity of UHIs. A heterogeneous increase in UHI intensity over all seven districts was found, which might have potential implications for regional climate change. Our study findings will enable policymakers to reduce UHI and the climate change effect in the concerned districts.

2020 ◽  
Vol 12 (3) ◽  
pp. 578
Author(s):  
Yuchen Wang ◽  
Yu Zhang ◽  
Nan Ding ◽  
Kai Qin ◽  
Xiaoyan Yang

As an important energy absorption process in the Earth’s surface energy balance, evapotranspiration (ET) from vegetation and bare soil plays an important role in regulating the environmental temperatures. However, little research has been done to explore the cooling effect of ET on the urban heat island (UHI) due to the lack of appropriate remote-sensing-based estimation models for complex urban surface. Here, we apply the modified remote sensing Penman–Monteith (RS-PM) model (also known as the urban RS-PM model), which has provided a new regional ET estimation method with the better accuracy for the urban complex underlying surface. Focusing on the city of Xuzhou in China, ET and land surface temperature (LST) were inversed by using 10 Landsat 8 images during 2014–2018. The impact of ET on LST was then analyzed and quantified through statistical and spatial analyses. The results indicate that: (1) The alleviating effect of ET on the UHI was stronger during the warmest months of the year (May–October) but not during the colder months (November–March); (2) ET had the most significant alleviating effect on the UHI effect in those regions with the highest ET intensities; and (3) in regions with high ET intensities and their surrounding areas (within a radius of 150 m), variation in ET was a key factor for UHI regulation; a 10 W·m−2 increase in ET equated to 0.56 K decrease in LST. These findings provide a new perspective for the improvement of urban thermal comfort, which can be applied to urban management, planning, and natural design.


2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Zhi Qiao ◽  
Guangjin Tian ◽  
Lixiao Zhang ◽  
Xinliang Xu

Beijing has experienced rapid urbanization and associated urban heat island (UHI) effects. This study aimed at analyzing the impact of urban form on UHI in Beijing using TM/ETM images between 1989 and 2010. Spatial analysis was proposed to explore the relationships between area, compactness ratio, the gravity centers of urban land, and UHI. The UHI in Beijing spatially represented a “NE-SW” spindle. The land surface temperature (LST) was higher in south than in north. Urban Heat Island Ratio Index (URI) was well interrelated with urban land area in different zones. Under the similar urban land area condition, UHI and compactness ratio of urban land were in positive correlation. The moving direction of the UHI gravity center was basically in agreement with urban land sprawl. The encroachment of urban land on suburban land is the leading source of UHI effect. The results suggest that urban design based on urban form would be effective for regulating the thermal environment.


Author(s):  
Bindi Dave ◽  
Shaily Gandhi

Growing urbanisation has led to increase in the built up area, reduction in open and green spaces with in the cities and the periphery. The urban saturation and the enlargement of the built space have determined environmental changes, increasing the already precarious condition of the natural systems in these spaces of high saturation. It results in to the formation of Urban Heat Island (UHI). Over the last few years, Ahmedabad has experienced rapid urbanization and associated Urban Heat Island (UHI) effects. This study aims at analysing spatially and temporally, the impact of urban form expansion on UHI in Ahmedabad using Landsat thermal images. The Mono Window Algorithm has been used to retrieve Land Surface Temperature (LST) from the thermal bands of LANDSAT-5, 8 TM satellite data. Various spatial analysis techniques were used to explore the relationships between area, compactness ratio, the gravity centers of urban land, and UHI. Under the similar urban land area condition, UHI and compactness ratio of urban land were in positive correlation. The moving direction of the UHI gravity center was basically in agreement with urban land sprawl. The encroachment of urban land on suburban land is the leading source of UHI effect. The results suggest that urban design based on urban form would be effective for regulating the thermal environment.


2021 ◽  
Vol 13 (2) ◽  
pp. 762
Author(s):  
Liu Tian ◽  
Yongcai Li ◽  
Jun Lu ◽  
Jue Wang

High population density, dense high-rise buildings, and impervious pavements increase the vulnerability of cities, which aggravate the urban climate environment characterized by the urban heat island (UHI) effect. Cities in China provide unique information on the UHI phenomenon because they have experienced rapid urbanization and dramatic economic development, which have had a great influence on the climate in recent decades. This paper provides a review of recent research on the methods and impacts of UHI on building energy consumption, and the practical techniques that can be used to mitigate the adverse effects of UHI in China. The impact of UHI on building energy consumption depends largely on the local microclimate, the urban area features where the building is located, and the type and characteristics of the building. In the urban areas dominated by air conditioning, UHI could result in an approximately 10–16% increase in cooling energy consumption. Besides, the potential negative effects of UHI can be prevented from China in many ways, such as urban greening, cool material, water bodies, urban ventilation, etc. These strategies could have a substantial impact on the overall urban thermal environment if they can be used in the project design stage of urban planning and implemented on a large scale. Therefore, this study is useful to deepen the understanding of the physical mechanisms of UHI and provide practical approaches to fight the UHI for the urban planners, public health officials, and city decision-makers in China.


2021 ◽  
Author(s):  
Emily Elhacham ◽  
Pinhas Alpert

&lt;p&gt;Over a billion people currently live in coastal areas, and coastal urbanization is rapidly growing worldwide. Here, we explore the impact of an extreme and rapid coastal urbanization on near-surface climatic variables, based on MODIS data, Landsat and some in-situ observations. We study Dubai, one of the fastest growing cities in the world over the last two decades. Dubai's urbanization centers along its coastline &amp;#8211; in land, massive skyscrapers and infrastructure have been built, while in sea, just nearby, unique artificial islands have been constructed.&lt;/p&gt;&lt;p&gt;Studying the coastline during the years of intense urbanization (2001-2014), we show that the coastline exhibits surface urban heat island characteristics, where the urban center experiences higher temperatures, by as much as 2.0&amp;#176;C and more, compared to the adjacent less urbanized zones. During development, the coastal surface urban heat island has nearly doubled its size, expanding towards the newly developed areas. This newly developed zone also exhibited the largest temperature trend along the coast, exceeding 0.1&amp;#176;C/year on average.&lt;/p&gt;&lt;p&gt;Overall, we found that over land, temperature increases go along with albedo decreases, while in sea, surface temperature decreases and albedo increases were observed particularly over the artificial islands. These trends in land and sea temperatures affect the land-sea temperature gradient which influences the breeze intensity. The above findings, along with the increasing relative humidity shown, directly affect the local population and ecosystem and add additional burden to this area, which is already considered as one of the warmest in the world and a climate change 'hot spot'.&lt;/p&gt;&lt;p&gt;&amp;#160;&lt;/p&gt;&lt;p&gt;&lt;strong&gt;References:&lt;/strong&gt;&lt;/p&gt;&lt;p&gt;E. Elhacham and P. Alpert, &quot;Impact of coastline-intensive anthropogenic activities on the atmosphere from moderate resolution imaging spectroradiometer (MODIS) data in Dubai (2001&amp;#8211;2014)&quot;, &lt;em&gt;Earth&amp;#8217;s Future&lt;/em&gt;, 4, 2016. https://doi.org/10.1002/2015EF000325&lt;/p&gt;&lt;p&gt;E. Elhacham and P. Alpert, &quot;Temperature patterns along an arid coastline experiencing extreme and rapid urbanization, case study: Dubai&quot;, submitted.&lt;/p&gt;


2020 ◽  
Vol 12 (21) ◽  
pp. 3491 ◽  
Author(s):  
Mingxing Chen ◽  
Yuan Zhou ◽  
Maogui Hu ◽  
Yaliu Zhou

Global large-scale urbanization has a deep impact on climate change and has brought great challenges to sustainable development, especially in urban agglomerations. At present, there is still a lack of research on the quantitative assessment of the relationship between urban scale and urban expansion and the degree of the urban heat island (UHI) effect, as well as a discussion on mitigation and adaptation of the UHI effect from the perspective of planning. This paper analyzes the regional urbanization process, average surface temperature variation characteristics, surface urban heat island (SUHI), which reflects the intensity of UHI, and the relationship between urban expansion, urban scale, and the UHI in the Beijing–Tianjin–Hebei (BTH) urban agglomeration using multi-source analysis of data from 2000, 2005, 2010, and 2015. The results show that the UHI effect in the study area was significant. The average surface temperature of central areas was the highest, and decreased from central areas to suburbs in the order of central areas > expanding areas > rural residential areas. From the perspective of spatial distribution, in Beijing, the southern part of the study area, the junction of Tianjin, Langfang, and Cangzhou are areas with intense SUHI. The scale and pace of expansion of urban land in Beijing were more than in other cities, the influencing range of SUHI in Beijing increased obviously, and the SUHI of central areas was most intense. The results indicate that due to the larger urban scale of the BTH urban agglomeration, it will face a greater UHI effect. The UHI effect was also more significant in areas of dense distribution in cities within the urban agglomeration. Based on results and existing research, planning suggestions are proposed for central areas with regard to expanding urban areas and suburbs to alleviate the urban heat island effect and improve the resilience of cities to climate change.


2020 ◽  
Vol 12 (3) ◽  
pp. 1171 ◽  
Author(s):  
Hongyu Du ◽  
Fengqi Zhou ◽  
Chunlan Li ◽  
Wenbo Cai ◽  
Hong Jiang ◽  
...  

In the trend of global warming and urbanization, frequent extreme weather influences the life of citizens seriously. Shanghai, as a typical mega-city in China that has been successful in urbanization, suffers seriously from the urban heat island (UHI) effect. The research concentrates on the spatial and temporal pattern of surface UHI and land use. Then, the relation between them are further discussed. The results show that for the last 15 years, the UHI effect of Shanghai has been increasing continuously in both intensity and area. The UHI extends from the city center toward the suburban area. Along with the year, the ratio in area of Agricultural Land (AL), Wetland (WL), and Bare Land (BL) has decreased. On the contrary, Construction Land (CL) and Green Land (GL) have increased. The average land surface temperature (LST) rankings for each research year from high to low were all CL, BL, GL, AL, and WL. CL contributed the most to the UHI effect, while WL and GL contributed the most to mitigate the UHI. The conclusion provides practical advice aimed to mitigate the UHI effect for urban planning authorities.


Land ◽  
2020 ◽  
Vol 9 (2) ◽  
pp. 57 ◽  
Author(s):  
Huawei Li ◽  
Guifang Wang ◽  
Guohang Tian ◽  
Sándor Jombach

The Urban Heat Island (UHI) effect has been extensively studied as a global issue. The urbanization process has been proved to be the main reason for this phenomenon. Over the past 20 years, the built-up area of Zhengzhou city has grown five times larger, and the UHI effect has become increasingly pressing for the city’s inhabitants. Therefore, mitigating the UHI effect is an important research focus of the expanding capital city of the Henan province. In this study, the Landsat 8 image of July 2019 was selected from Landsat collection to obtain Land Surface Temperature (LST) by using Radiative Transfer Equation (RTE) method, and present land cover information by using spectral indices. Additionally, high-resolution Google Earth images were used to select 123 parks, grouped in five categories, to explore the impact factors on park cooling effect. Park Cooling Intensity (PCI) has been chosen as an indicator of the park cooling effect which will quantify its relation to park patch metrics. The results show that: (1) Among the five studied park types, the theme park category has the largest cooling effect while the linear park category has the lowest cooling effect; (2) The mean park LST and PCI of the samples are positively correlated with the Fractional Vegetation Cover (FVC) and with Normalized Difference Water Index (NDWI), but these are negatively correlated with the Normalized Difference Impervious Surface Index (NDISI). We can suppose that the increase of vegetation cover rate within water areas as well as the decrease of impervious surface in landscape planning and design will make future parks colder. (3) There is a correlation between the PCI and the park characteristics. The UHI effect could be mitigated by increasing of park size and reducing park fractal dimension (Frac_Dim) and perimeter-area ratio (Patario). (4) The PCI is influenced by the park itself and its surrounding area. These results will provide an important reference for future urban planning and urban park design to mitigate the urban heat island effect.


Sign in / Sign up

Export Citation Format

Share Document