scholarly journals Biomimetic Coatings Obtained by Combinatorial Laser Technologies

Coatings ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 463
Author(s):  
Emanuel Axente ◽  
Livia Elena Sima ◽  
Felix Sima

The modification of implant devices with biocompatible coatings has become necessary as a consequence of premature loosening of prosthesis. This is caused mainly by chronic inflammation or allergies that are triggered by implant wear, production of abrasion particles, and/or release of metallic ions from the implantable device surface. Specific to the implant tissue destination, it could require coatings with specific features in order to provide optimal osseointegration. Pulsed laser deposition (PLD) became a well-known physical vapor deposition technology that has been successfully applied to a large variety of biocompatible inorganic coatings for biomedical prosthetic applications. Matrix assisted pulsed laser evaporation (MAPLE) is a PLD-derived technology used for depositions of thin organic material coatings. In an attempt to surpass solvent related difficulties, when different solvents are used for blending various organic materials, combinatorial MAPLE was proposed to grow thin hybrid coatings, assembled in a gradient of composition. We review herein the evolution of the laser technological process and capabilities of growing thin bio-coatings with emphasis on blended or multilayered biomimetic combinations. These can be used either as implant surfaces with enhanced bioactivity for accelerating orthopedic integration and tissue regeneration or combinatorial bio-platforms for cancer research.

Coatings ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 99
Author(s):  
Liviu Duta

The aim of this review is to present the state-of-the art achievements reported in the last two decades in the field of pulsed laser deposition (PLD) of biocompatible calcium phosphate (CaP)-based coatings for medical implants, with an emphasis on their in vivo biological performances. There are studies in the dedicated literature on the in vivo testing of CaP-based coatings (especially hydroxyapatite, HA) synthesized by many physical vapor deposition methods, but only a few of them addressed the PLD technique. Therefore, a brief description of the PLD technique, along with some information on the currently used substrates for the synthesis of CaP-based structures, and a short presentation of the advantages of using various animal and human implant models will be provided. For an in-depth in vivo assessment of both synthetic and biological-derived CaP-based PLD coatings, a special attention will be dedicated to the results obtained by standardized and micro-radiographies, (micro) computed tomography and histomorphometry, tomodensitometry, histology, scanning and transmission electron microscopies, and mechanical testing. One main specific result of the in vivo analyzed studies is related to the demonstrated superior osseointegration characteristics of the metallic (generally Ti) implants functionalized with CaP-based coatings when compared to simple (control) Ti ones, which are considered as the “gold standard” for implantological applications. Thus, all such important in vivo outcomes were gathered, compiled and thoroughly discussed both to clearly understand the current status of this research domain, and to be able to advance perspectives of these synthetic and biological-derived CaP coatings for future clinical applications.


2020 ◽  
Vol 8 (15) ◽  
pp. 4988-5014 ◽  
Author(s):  
Bing Wang ◽  
Zhi Bin Zhang ◽  
Shi Peng Zhong ◽  
Zhao Qiang Zheng ◽  
Ping Xu ◽  
...  

This review introduces recent advances in the materials, fabrication and application of pulsed-laser deposition for high performance photo-detectors from an overall perspective. Challenges and future development trends are also discussed.


1999 ◽  
Vol 75 (26) ◽  
pp. 4091-4093 ◽  
Author(s):  
Stefan G. Mayr ◽  
Michael Moske ◽  
Konrad Samwer ◽  
Maggie E. Taylor ◽  
Harry A. Atwater

Molecules ◽  
2020 ◽  
Vol 25 (18) ◽  
pp. 4097
Author(s):  
Ruxandra Birjega ◽  
Andreea Matei ◽  
Valentina Marascu ◽  
Angela Vlad ◽  
Maria Daniela Ionita ◽  
...  

We report on the investigation of stearic acid-layered double hydroxide (LDH) composite films, with controlled wettability capabilities, deposited by a combined pulsed laser deposition (PLD)-matrix-assisted pulsed laser evaporation (MAPLE) system. Two pulsed lasers working in IR or UV were used for experiments, allowing the use of proper deposition parameters (wavelength, laser fluence, repetition rate) for each organic and inorganic component material. We have studied the time stability and wettability properties of the films and we have seen that the morphology of the surface has a low effect on the wettability of the surfaces. The obtained composite films consist in stearic acid aggregates in LDH structure, exhibiting a shift to hydrophobicity after 36 months of storage.


1991 ◽  
Vol 236 ◽  
Author(s):  
D. Thebert-Peeler ◽  
P.T. Murray ◽  
L. Petry ◽  
T.W. Haas

AbstractThin films have been grown on Si (100) substrates by pulsed laser evaporation of graphite using both IR and UV radiation. The character of the resulting film is found to be independent of the presence of H°. Diamond-like films are found to be a result of low (RT) temperature deposition of the higher energy incident particles of the UV (versus IR) laser ablation process.


2000 ◽  
Vol 636 ◽  
Author(s):  
Richard F. Haglund ◽  
Robert A. Weller ◽  
Cynthia E. Heiner ◽  
Matthew D. McMahon ◽  
Robert H. Magruder ◽  
...  

AbstractWe describe recent experiments in which we attempted the initial steps for fabricating twodimensional arrays of metal nanocrystals. We use a commercial pulsed-laser deposition system in concert with a focused ion beam to attempt control over both lateral and vertical dimensions at the nanometer length scale. In our experiments, regular arrays of holes typically 80 nm in diameter were drilled in Si substrates using the focused ion beam. Silver atoms were then deposited onto these substrates by pulsed laser evaporation from a metallic target in high vacuum. Under certain conditions of substrate temperature, laser pulse repetition rate, and fluence, small silver nanoclusters form preferentially around the structures previously etched in the silicon surfaces by the focused ion beam.


2003 ◽  
Vol 76 (5) ◽  
pp. 731-735 ◽  
Author(s):  
B. Hopp ◽  
T. Smausz ◽  
N. Kresz ◽  
P.M. Nagy ◽  
A. Juhász ◽  
...  

2012 ◽  
Vol 18 (S5) ◽  
pp. 117-118
Author(s):  
E. L. Solla ◽  
B. Rodríguez-González ◽  
I. Pereiro ◽  
C. Rodríguez-Valencia ◽  
B. C. Cores ◽  
...  

Hydroxyapatite, with a composition that resembles the mineral phase of bone, is often used as a coating of metallic prostheses to improve the adhesion and osseointegration of implants in different parts of the skeleton. Among the available techniques that allow the deposition of this material on metallic substrates, Pulsed Laser Deposition (PLD) is capable of producing high quality and highly biocompatible coatings with excellent final attachment.


Coatings ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 662
Author(s):  
Joe Sakai ◽  
José Manuel Caicedo Roque ◽  
Pablo Vales-Castro ◽  
Jessica Padilla-Pantoja ◽  
Guillaume Sauthier ◽  
...  

PbTiO3 (PTO) suffers from difficulty in preparing high-density robust bulk ceramics, which in turn has been a bottleneck in thin films growth with physical vapor deposition (PVD) methods. In the present work, we prepared non-doped PTO thin films by a pulsed laser deposition (PLD) method with either a single PTO target or a mosaic target consisting of PbO and TiO2 pie-shaped pieces. On the PTO single target, laser irradiation caused selective ablation of Pb, resulting in Ti-rich cone-shaped pillar structure on the surface, whereas the irradiated surface of PbO and TiO2 pieces was smoother. Epitaxial PTO films deposited on SrTiO3 (001) substrates from the pie-chart targets with PbO:TiO2 areal ratio from 3:5 to 5:3 resulted in composition, crystallinity, flatness, and ferroelectric properties almost independent of the areal ratio. The averaged composition of each film was close to stoichiometric, suggesting a compositional self-control mechanism. For growing epitaxial and high-quality non-doped PTO films, a PbO–TiO2 pie-chart target is advantageous in easiness of handling and stable surface structure.


Sign in / Sign up

Export Citation Format

Share Document