scholarly journals Oxidation and Wear Mechanisms of FeCoCrNiMnAlx Cladding Layers at High-Temperature Condition

Coatings ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 1136
Author(s):  
Yan Cui ◽  
Junqi Shen ◽  
Shengsun Hu ◽  
Keping Geng

FeCoCrNiMnAlx high-entropy alloy (HEA) cladding layers were successfully fabricated on H13 steel by laser cladding. The microstructure and properties of the FeCoCrNiMnAlx HEA cladding layers were systematically studied. The influence of Al content on high-temperature wear resistance of HEAs was investigated by depth-of-field microscopy, XRD, SEM and EDS. Addition of Al element affected the mechanism of oxidation and strengthening of the cladding layers, and effectively promoted its anti-oxidant and abrasion resistance. Compared with the FeCoCrNiMn cladding layer, the FeCoCrNiMnAl0.75 cladding layer enhanced the anti-plastic deformation capacity by 7.1% and reduced oxidation weight gain and total wear weight loss at high temperature by 36.79% and 79.0%, respectively. The wear mechanisms of the cladding layer at high temperature were mainly oxidation wear and abrasive wear, while adhesive wear took a backseat.

2021 ◽  
Vol 543 ◽  
pp. 148794
Author(s):  
Yangchuan Cai ◽  
Lisong Zhu ◽  
Yan Cui ◽  
Mengdie Shan ◽  
Huijun Li ◽  
...  

Coatings ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 364
Author(s):  
Hao Wang ◽  
Jun Xiao ◽  
Hui Wang ◽  
Yong Chen ◽  
Xing Yin ◽  
...  

Liquid metal fast reactors were considered to be the most promising solution to meet the enormous energy demand in the future. However, corrosion phenomenon caused by the liquid metal, especially in high-temperature lead-bismuth coolant, has greatly hindered the commercialization of the advanced Generation-IV nuclear system. This review discussed current research on the corrosion resistance of structural materials (such as EP823, T91, ODS, and authentic steels) in high-temperature liquid metal served as reactor coolants. The current corrosion resistance evaluation has proved that even for the excellent performance of EP823, the structural material selected in pressurized water reactor is not the ideal material for operation in the high-temperature lead-bismuth eutectic (LBE). Furthermore, the latest coating technologies that are expected to be applied to cladding materials for coolant system were extensively discussed, including Al-containing coatings, ceramic coatings, oxide coatings, amorphous coatings and high-entropy alloy coatings. The detailed comparison summarized the corrosion morphology and corrosion products of various coatings in LBE. This review not only provided a systematic understanding of the corrosion phenomena, but also demonstrated that coating technology is an effective method to solve the corrosion issues of the advanced next-generation reactors.


2019 ◽  
Vol 177 ◽  
pp. 82-95 ◽  
Author(s):  
Prafull Pandey ◽  
Sanjay Kashyap ◽  
Dhanalakshmi Palanisamy ◽  
Amit Sharma ◽  
Kamanio Chattopadhyay

Sign in / Sign up

Export Citation Format

Share Document