scholarly journals Evaluation of Streptococcus mutans Adhesion to Stainless Steel Surfaces Modified Using Different Topographies Following a Biomimetic Approach

Coatings ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 829
Author(s):  
Santiago Arango-Santander ◽  
Lina Serna ◽  
Juliana Sanchez-Garzon ◽  
John Franco

Bacterial adhesion to surfaces is the first step in biofilm formation, which leads to the development of conditions that may compromise the health status of patients. Surface modification has been proposed to reduce bacterial adhesion to biomaterials. The objective of this work was to assess and compare Streptococcus mutans adhesion to the surface of biomimetically-modified stainless steel using different topographies. Stainless steel plates were modified using a soft lithography technique following a biomimetic approach. The leaves from Colocasia esculenta, Crocosmia aurea and Salvinia molesta were used as surface models. Silica sol was synthesized using the sol-gel method. Following a soft lithography technique, the surface of the leaves were transferred to the surface of the SS plates. Natural and modified surfaces were characterized by means of atomic force microscopy and contact angle. Streptococcus mutans was used to assess bacterial adhesion. Contact angle measurements showed that natural leaves are highly hydrophobic, but such hydrophobicity could not be transferred to the metallic plates. Roughness varied among the leaves and increased after transference for C. esculenta and decreased for C. aurea. In general, two of the surface models used in this investigation showed positive results for reduction of bacterial adhesion (C. aurea and C. esculenta), while the other showed an increase in bacterial adhesion (S. molesta). Therefore, since a biomimetic approach using natural surfaces showed opposite results, careful selection of the surface model needs to be taken into consideration.

Coatings ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 201
Author(s):  
Santiago Arango-Santander ◽  
Carolina Gonzalez ◽  
Anizac Aguilar ◽  
Alejandro Cano ◽  
Sergio Castro ◽  
...  

Bacterial adhesion and biofilm formation on the surfaces of dental and orthodontic biomaterials is primary responsible for oral diseases and biomaterial deterioration. A number of alternatives to reduce bacterial adhesion to biomaterials, including surface modification using a variety of techniques, has been proposed. Even though surface modification has demonstrated a reduction in bacterial adhesion, information on surface modification and biomimetics to reduce bacterial adhesion to a surface is scarce. Therefore, the main objective of this work was to assess bacterial adhesion to orthodontic archwires that were modified following a biomimetic approach. The sample consisted of 0.017 × 0.025, 10 mm-long 316L stainless steel and NiTi orthodontic archwire fragments. For soft lithography, a polydimethylsiloxane (PDMS) stamp was obtained after duplicating the surface of Colocasia esculenta (L) Schott leaves. Topography transfer to the archwires was performed using silica sol. Surface hydrophobicity was assessed by contact angle and surface roughness by atomic force microscopy. Bacterial adhesion was evaluated using Streptococcus mutans. The topography of the Colocasia esculenta (L) Schott leaf was successfully transferred to the surface of the archwires. Contact angle and roughness between modified and unmodified archwire surfaces was statistically significant. A statistically significant reduction in Streptococcus mutans adhesion to modified archwires was also observed.


2020 ◽  
Author(s):  
Xiaodie Wang ◽  
Limin Liu ◽  
Xiaoyan Zhou ◽  
Yongbiao Huo ◽  
Jinlong Gao ◽  
...  

Abstract Background Recent preventive strategies for dental caries focus on targeting the mechanisms underlying biofilm formation, including inhibiting bacterial adhesion. A promising approach to prevent bacterial adhesion is to modify the composition of acquired salivary pellicle. This in vitro study investigated the effect and possible underlying mechanism of pellicle modification by casein phosphopeptide (CPP) on Streptococcus mutans (S. mutans) initial adhesion, and the impact of fluoride on the efficacy of CPP.Methods The salivary pellicle-coated hydroxyapatite (s-HA) disc was modified by 2.5% CPP or 2.5% CPP supplemented with 900 ppm fluoride solutions. After cultivation of S. mutans, the adherent bacteria were visualized by scanning electron microscopy (SEM) and quantitatively evaluated using the plate count method. Confocal laser scanning microscopy (CLSM) was used to evaluate the proportions of total and dead S. mutans. The concentrations of total, free, and bound calcium and fluoride in CPP and fluoride-doped CPP solutions were determined. The water contact angle and zeta potential of s-HA with and without modification were measured. The data were statistically analyzed using one-way ANOVA followed by a Turkey post hoc multiple comparison test.Results Initial adhesion of S. mutans to s-HA was inhibited in response to pellicle modification by CPP and fluoride-doped CPP, and the latter was more efficient. CLSM analysis showed that the proportion of dead S. mutans did not differ between the groups. Water contact angle and zeta potential decreased after pellicle modification, and both were lowest in the fluoride-doped CPP group.Conclusions Pellicle modification by CPP inhibited S. mutans initial adhesion to s-HA, possibly by reducing hydrophobicity and negative charge on the s-HA surface, and incorporating fluoride into CPP enhanced its anti-adhesion effect.


2020 ◽  
Author(s):  
Xiaodie Wang ◽  
Limin Liu ◽  
Xiaoyan Zhou ◽  
Yongbiao Huo ◽  
Jinlong Gao ◽  
...  

Abstract Background: Recent preventive strategies for dental caries focus on targeting the mechanisms underlying biofilm formation, including inhibiting bacterial adhesion. A promising approach to prevent bacterial adhesion is to modify the composition of acquired salivary pellicle. This in vitro study investigated the effect and possible underlying mechanism of pellicle modification by casein phosphopeptide (CPP) on Streptococcus mutans (S. mutans) initial adhesion, and the impact of fluoride on the efficacy of CPP. Methods: The salivary pellicle-coated hydroxyapatite (s-HA) discs were treated with phosphate buffered saline (blank control), heat-inactivated 2.5% CPP (negative control), 2.5% CPP (CPP) or 2.5% CPP supplemented with 900 ppm fluoride (CPP + F). After cultivation of S. mutans, the adherent bacteria were visualized by scanning electron microscopy (SEM) and quantitatively evaluated using the plate count method. Confocal laser scanning microscopy (CLSM) was used to evaluate the proportions of total and dead S. mutans. The concentrations of total, free, and bound calcium and fluoride in CPP and fluoride-doped CPP solutions were determined. The water contact angle and zeta potential of s-HA with and without modification were measured. The data were statistically analyzed using one-way ANOVA followed by a Turkey post hoc multiple comparison test.Results: Initial adhesion of S. mutans to s-HA was inhibited in response to pellicle modification by CPP and fluoride-doped CPP, and the latter was more efficient. CLSM analysis showed that the proportion of dead S. mutans did not differ between the groups. Water contact angle and zeta potential decreased after pellicle modification, and both were lowest in the CPP + F group. Conclusions: Pellicle modification by CPP inhibited S. mutans initial adhesion to s-HA, possibly by reducing hydrophobicity and negative charge on the s-HA surface, and incorporating fluoride into CPP enhanced its anti-adhesion effect.


2021 ◽  
Vol 8 (2) ◽  
pp. 106
Author(s):  
Adella Syvia Maharani ◽  
Pramudya Aditama ◽  
Murti Indrastuti ◽  
Suparyono Saleh

ABSTRACTBackground: Acrylic resin artificial teeth is easily to have bacterial adhesion. It is necessary to perform a treatment on that surface, in order to reduce bacterial adhesion. This study aimed to reveal the effect of silica coating in acrylic resin artificial teeth on surface roughness, contact angle measurement, and the growth of Streptococcus mutans.Method: The study was conducted on two groups (n=16) of disk-shaped acrylic resin artificial teeth with a diameter of 10 mm and thickness of 2 mm. A 2% silica coating material was obtained by diluting 2 g silica nanoparticles on 100 ml of ethanol. Surface roughness, contact angle measurement, and the growth of Streptococcus mutans was measured using surface roughness measuring instrument, camera digital, and colony counter. The data obtained were then analyzed using T-test (p<0.05).Result: The results showed that the surface roughness and contact angle measurement in group I (0.29±0.08 μm); (79,49º ± 10,88º) was higher than group II (0.17±0.05 μm); (34,77º±0,05º). The growth of Streptococcus mutans in group I was also higher (32.28±3.75 CFU/ml) than group II (24.83±3.47 CFU/ml). Conclusion: The study concluded that there is an effect of silica coating on surface roughness, contact angle measurement, and the growth of Streptococcus mutans in acrylic resin artificial teeth.


2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Santiago Arango-Santander ◽  
Alejandro Pelaez-Vargas ◽  
Sidónio C. Freitas ◽  
Claudia García

Dip-pen nanolithography (DPN) and soft lithography are techniques suitable to modify the surface of biomaterials. Modified surfaces might play a role in modulating cells and reducing bacterial adhesion and biofilm formation. The main objective of this study was threefold: first, to create patterns at microscale on model surfaces using DPN; second, to duplicate and transfer these patterns to a real biomaterial surface using a microstamping technique; and finally, to assess bacterial adhesion to these developed patterned surfaces using the cariogenic species Streptococcus mutans. DPN was used with a polymeric adhesive to create dot patterns on model surfaces. Elastomeric polydimethylsiloxane was used to duplicate the patterns and silica sol to transfer them to the medical grade stainless steel 316L surface by microstamping. Optical microscopy and atomic force microscopy (AFM) were used to characterize the patterns. S. mutans adhesion was assessed by colony-forming units (CFUs), MTT viability assay, and scanning electron microscopy (SEM). DPN allowed creating microarrays from 1 to 5 µm in diameter on model surfaces that were successfully transferred to the stainless steel 316L surface via microstamping. A significant reduction up to one order of magnitude in bacterial adhesion to micropatterned surfaces was observed. The presented experimental approach may be used to create patterns at microscale on a surface and transfer them to other surfaces of interest. A reduction in bacterial adhesion to patterned surfaces might have a major impact since adhesion is a key step in biofilm formation and development of biomaterial-related infections.


Materials ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 1027
Author(s):  
Jenni Hjerppe ◽  
Sampo Rodas ◽  
Johanna Korvala ◽  
Paula Pesonen ◽  
Anna Kaisanlahti ◽  
...  

The aim of this study was to evaluate the surface roughness of fixed prosthodontic materials after polishing or roughening with a stainless steel curette or ultrasonic scaler and to examine the effect of these on Streptococcus mutans adhesion and biofilm accumulation. Thirty specimens (10 × 10 × 3 mm3) of zirconia (Zr), pressed lithium disilicate (LDS-Press), milled lithium disilicate glazed (LDS-Glaze), titanium grade V (Ti) and cobalt-chromium (CoCr) were divided into three groups (n = 10) according to surface treatment: polished (C), roughened with stainless steel curette (SC), roughened with ultrasonic scaler (US). Surface roughness values (Sa, Sq) were measured with a spinning disc confocal microscope, and contact angles and surface free energy (SFE) were measured with a contact angle meter. The specimens were covered with sterilized human saliva and immersed into Streptococcus mutans suspensions for bacterial adhesion. The biofilm was allowed to form for 24 h. Sa values were in the range of 0.008–0.139 µm depending on the material and surface treatment. Curette and ultrasonic scaling increased the surface roughness in LDS-Glaze (p < 0.05), Ti (p < 0.01) and CoCr (p < 0.001), however, surface roughness did not affect bacterial adhesion. Zr C and US had a higher bacterial adhesion percentage compared to LDS-Glaze C and US (p = 0.03). There were no differences between study materials in terms of biofilm accumulation.


2014 ◽  
Vol 979 ◽  
pp. 355-358 ◽  
Author(s):  
Tanattha Rattana ◽  
Nirun Witit-Anun ◽  
Sumetha Suwanboon ◽  
Surasing Chaiyakun

In this work, TiO2thin films were prepared by a sol-gel spin coating method on glass slide, stainless steel 304 and silicon wafer substrates. The thin films were annealed at different temperatures at ambient atmosphere. The effect of substrates and annealing temperatures on microstructure, surface morphology and hydrophilicity of the films were characterized by Raman spectroscopy, atomic force microscopy and water contact angle measurement, respectively. The Raman spectra indicated that the annealed TiO2thin films (at 550 °C) coated on stainless steel and silicon wafer exhibited anatase structure. The contact angle of all samples decreased with increasing the UV-irradiation time and annealing temperature.


2000 ◽  
Vol 628 ◽  
Author(s):  
Mark A. Clarner ◽  
Michael J. Lochhead

ABSTRACTOrganically modified silica gels and dye-doped silica gels have been patterned into micrometer-scale structures on a substrate using micro molding in capillaries (MIMIC). This approach is from a class of elastomeric stamping and molding techniques collectively known as soft lithography. Soft lithography and sol-gel processing share attractive features in that they are relatively benign processes performed at ambient conditions, which makes both techniques compatible with a wide variety of organic molecules, molecular assemblies, and biomolecules. The combination of sol-gel and soft lithography, therefore, holds enormous promise as a tool for microfabrication of materials with optical, chemical, or biological functionality that are not readily patterned with conventional methods. This paper describes our investigation of micro-patterned organic-inorganic hybrid materials containing indicator dyes for microfluidic sensor applications. Reversible colorimetric pH sensing via entrapped reagents is demonstrated in a prototype microfluidic sensor element. Patterned structures range from one to tens of micrometers in cross-section and are up to centimeters in length. Fundamental chemical processing issues associated with mold filling, cracking and sensor stability are discussed.


Sign in / Sign up

Export Citation Format

Share Document