scholarly journals Biocompatibility and Antibiofilm Properties of Samarium Doped Hydroxyapatite Coatings: An In Vitro Study

Coatings ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1185
Author(s):  
Ionela Cristina Nica ◽  
Marcela Popa ◽  
Luminita Marutescu ◽  
Anca Dinischiotu ◽  
Simona Liliana Iconaru ◽  
...  

The implant-related infection as a consequence of bacterial adherence and biofilm formation remains one of the main causes of implant failure. Grace to recent advances in materials science, their great mechanical properties and their biocompatibility (both in vitro and in vivo), antibacterial coatings have gradually become a primary component of the global strategy for preventing microbial colonization. In the present work, novel antibacterial coatings containing hydroxyapatite nanoparticles doped with two different concentrations of samarium (5SmHAp and 10SmHAp) were obtained on Si substrates using the dip coating method. The morphology and physicochemical properties of these modified surfaces were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR). In addition, their antimicrobial effects and biocompatibility were assessed. The results showed a continuous and homogeneous layer, uniformly deposited, with no cracks or impurities. 5SmHAp and 10SmHAp surfaces exhibited significant antibiofilm activity and good biocompatibility without inducing cytotoxic effects in human gingival fibroblasts. All these findings indicate that samarium doped hydroxyapatite coatings could be great candidates for the development of new antimicrobial strategies.

Coatings ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 781 ◽  
Author(s):  
Paula E. Florian ◽  
Liviu Duta ◽  
Valentina Grumezescu ◽  
Gianina Popescu-Pelin ◽  
Andrei C. Popescu ◽  
...  

This study is focused on the adhesion and differentiation of the human primary mesenchymal stem cells (hMSC) to osteoblasts lineage on biological-derived hydroxyapatite (BHA) and lithium-doped BHA (BHA:LiP) coatings synthesized by Pulsed Laser Deposition. An optimum adhesion of the cells on the surface of BHA:LiP coatings compared to control (uncoated Ti) was demonstrated using immunofluorescence labelling of actin and vinculin, two proteins involved in the initiation of the cell adhesion process. BHA:LiP coatings were also found to favor the differentiation of the hMSC towards an osteoblastic phenotype in the presence of osteoinductive medium, as revealed by the evaluation of osteoblast-specific markers, osteocalcin and alkaline phosphatase. Numerous nodules of mineralization secreted from osteoblast cells grown on the surface of BHA:LiP coatings and a 3D network-like organization of cells interconnected into the extracellular matrix were evidenced. These findings highlight the good biocompatibility of the BHA coatings and demonstrate that the use of lithium as a doping agent results in an enhanced osteointegration potential of the synthesized biomaterials, which might therefore represent viable candidates for future in vivo applications.


2021 ◽  
Vol 0 (0) ◽  
pp. 0-0
Author(s):  
C.A. Lux ◽  
K. Biswas ◽  
M.W. Taylor ◽  
R.G. Douglas

Background: Despite best medical and surgical practice, some cases of chronic rhinosinusitis (CRS) can remain recalcitrant. Bacterial biofilms have been associated with the recalcitrance of sinonasal inflammation. Biofilms are highly resistant to commonly prescribed antibiotics. Accordingly, more effective antimicrobial treatment options are needed to treat refractory CRS. The aim of this study was to determine the in vitro efficacy of neutral electrolysed water (NEW) and povidone-iodine (PVI) against CRS-associated Staphylococcus aureus biofilms. Methods: Mature S. aureus biofilms were grown in a Centre for Disease Control (CDC) biofilm reactor. The antimicrobial activity of NEW, PVI and doxycycline was determined for both planktonic and biofilm cultures of a clinical S. aureus isolate using minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC) and minimum biofilm eradication concentration (MBEC) assays. Results: MICs and MBCs were determined for all antimicrobials. MBC values were similar to MICs for both antiseptics, but doxycycline MBCs were significantly higher than the associated MICs. Biofilms were highly resistant to NEW and doxycycline. The MBEC for doxycycline was between 500 and 1000 µg/mL. NEW was ineffective against biofilms and no MBEC could be determined. In contrast, a concentration of 10% of the commercial PVI solution (10 mg/mL PVI) led to effective eradication of mature biofilms. Conclusion: In this study, only PVI showed promising antibiofilm activity at physiological concentrations. The in vivo efficacy of PVI warrants further investigation of its potential as a treatment for recalcitrant CRS.


mBio ◽  
2019 ◽  
Vol 10 (6) ◽  
Author(s):  
Payal Joglekar ◽  
Hua Ding ◽  
Pablo Canales-Herrerias ◽  
Pankaj Jay Pasricha ◽  
Justin L. Sonnenburg ◽  
...  

ABSTRACT Gut-derived immunoglobulin A (IgA) is the most abundant antibody secreted in the gut that shapes gut microbiota composition and functionality. However, most of the microbial antigens targeted by gut IgA remain unknown, and the functional effects of IgA targeting these antigens are currently understudied. This study provides a framework for identifying and characterizing gut microbiota antigens targeted by gut IgA. We developed a small intestinal ex vivo culture assay to harvest lamina propria IgA from gnotobiotic mice, with the aim of identifying antigenic targets in a model human gut commensal, Bacteroides thetaiotaomicron VPI-5482. Colonization by B. thetaiotaomicron induced a microbe-specific IgA response that was reactive against diverse antigens, including capsular polysaccharides, lipopolysaccharides, and proteins. IgA against microbial protein antigens targeted membrane and secreted proteins with diverse functionalities, including an IgA specific against proteins of the polysaccharide utilization locus (PUL) that are necessary for utilization of fructan, which is an important dietary polysaccharide. Further analyses demonstrated that the presence of dietary fructan increased the production of fructan PUL-specific IgA, which then downregulated the expression of fructan PUL in B. thetaiotaomicron, both in vivo and in vitro. Since the expression of fructan PUL has been associated with the ability of B. thetaiotaomicron to colonize the gut in the presence of dietary fructans, our work suggests a novel role for gut IgA in regulating microbial colonization by modulating their metabolism. IMPORTANCE Given the significant impact that gut microbes have on our health, it is essential to identify key host and environmental factors that shape this diverse community. While many studies have highlighted the impact of diet on gut microbiota, little is known about how the host regulates this critical diet-microbiota interaction. In our present study, we discovered that gut IgA targeted a protein complex involved in the utilization of an important dietary polysaccharide: fructan. While the presence of dietary fructans was previously thought to allow unrestricted growth of fructan-utilizing bacteria, our work shows that gut IgA, by targeting proteins responsible for fructan utilization, provides the host with tools that can restrict the microbial utilization of such polysaccharides, thereby controlling their growth.


2019 ◽  
Vol 7 (9) ◽  
pp. 278 ◽  
Author(s):  
Lorenzo

The advent of multidrug resistance among pathogenic bacteria is devastating the worth of antibiotics and changing the way of their administration, as well as the approach to use new or old drugs. The crisis of antimicrobial resistance is also due to the unavailability of newer drugs, attributable to exigent regulatory requirements and reduced financial inducements. The emerging resistance to antibiotics worldwide has led to renewed interest in old drugs that have fallen into disuse because of toxic side effects. Thus, comprehensive efforts are needed to minimize the pace of resistance by studying emergent microorganisms and optimize the use of old antimicrobial agents able to maintain their profile of susceptibility. Chloramphenicol is experiencing its renaissance because it is widely used in the treatment and prevention of superficial eye infections due to its broad spectrum of activity and other useful antimicrobial peculiarities, such as the antibiofilm properties. Concerns have been raised in the past for the risk of aplastic anemia when chloramphenicol is given intravenously. Chloramphenicol seems suitable to be used as topical eye formulation for the limited rate of resistance compared to fluoroquinolones, for its scarce induction of bacterial resistance and antibiofilm activity, and for the hypothetical low impact on ocular microbiota disturbance. Further in-vitro and in vivo studies on pharmacodynamics properties of ocular formulation of chloramphenicol, as well as its real impact against biofilm and the ocular microbiota, need to be better addressed in the near future.


2012 ◽  
Vol 109 (38) ◽  
pp. 15217-15222 ◽  
Author(s):  
Tara L. Deans ◽  
Anirudha Singh ◽  
Matthew Gibson ◽  
Jennifer H. Elisseeff

Combining synthetic biology and materials science will enable more advanced studies of cellular regulatory processes, in addition to facilitating therapeutic applications of engineered gene networks. One approach is to couple genetic inducers into biomaterials, thereby generating 3D microenvironments that are capable of controlling intrinsic and extrinsic cellular events. Here, we have engineered biomaterials to present the genetic inducer, IPTG, with different modes of activating genetic circuits in vitro and in vivo. Gene circuits were activated in materials with IPTG embedded within the scaffold walls or chemically linked to the matrix. In addition, systemic applications of IPTG were used to induce genetic circuits in cells encapsulated into materials and implanted in vivo. The flexibility of modifying biomaterials with genetic inducers allows for patterned placement of these inducers that can be used to generate distinct patterns of gene expression. Together, these genetically interactive materials can be used to characterize genetic circuits in environments that more closely mimic cells’ natural 3D settings, to better explore complex cell–matrix and cell–cell interactions, and to facilitate therapeutic applications of synthetic biology.


2009 ◽  
Vol 30 (2) ◽  
pp. 190-192 ◽  
Author(s):  
Maria D. Hernandez ◽  
Mohammad D. Mansouri ◽  
Saima Aslam ◽  
Barry Zeluff ◽  
Rabih O. Darouiche

We assessed the in vitro antimicrobial activity and the in vivo efficacy of dipping ventricular assist devices in a combination of N-acetylcysteine, gentamicin, and amphotericin B (NAC/G/A). Ventricular assist devices dipped in NAC/G/A exhibited broad-spectrum antimicrobial activity in vitro and were less likely than undipped devices to become colonized with Staphylococcus aureus in a rabbit model.


1996 ◽  
Vol 24 (9) ◽  
pp. 1482-1489 ◽  
Author(s):  
Pia Appelgren ◽  
Ulrika Ransjo ◽  
Lars Bindslev ◽  
Frank Espersen ◽  
Olle Larm

Sign in / Sign up

Export Citation Format

Share Document