Removed: In vitro corrosion resistance and in vivo osseointegration testing of new multifunctional beta-type quaternary TiMoZrTa alloys [Materials Science & Engineering C] 108 (2020) 110485

Author(s):  
Lucia Carmen Trincă ◽  
Daniel Mareci ◽  
Carmen Solcan ◽  
Mircea Fântânariu ◽  
Liviu Burtan ◽  
...  
2018 ◽  
Vol 16 (3) ◽  
pp. 126-136 ◽  
Author(s):  
Preeti Makkar ◽  
Swapan Kumar Sarkar ◽  
Andrew R. Padalhin ◽  
Byoung-Gi Moon ◽  
Young Seon Lee ◽  
...  

Background: Magnesium (Mg)-based alloys are considered to be promising materials for implant application due to their excellent biocompatibility, biodegradability, and mechanical properties close to bone. However, low corrosion resistance and fast degradation are limiting their application. Mg–Ca alloys have huge potential owing to a similar density to bone, good corrosion resistance, and as Mg is essential for Ca incorporation into bone. The objective of the present work is to determine the in vitro degradation and in vivo performance of binary Mg– xCa alloy ( x = 0.5 or 5.0 wt%) to assess its usability for degradable implant applications. Methods: Microstructural evolutions for Mg– xCa alloys were characterized by optical, SEM, EDX, and XRD. In vitro degradation tests were conducted via immersion test in phosphate buffer saline solution. In vivo performance in terms of interface, biocompatibility, and biodegradability of Mg– xCa alloys was examined by implanting samples into rabbit femoral condyle for 2 and 4 weeks. Results: Microstructural results showed the enhancement in intermetallic Mg2Ca phase with increase in Ca content. Immersion tests revealed that the dissolution rate varies linearly, with Ca content exhibiting more hydrogen gas evolution, increased pH, and higher degradation for Mg–5.0Ca alloy. In vivo studies showed good biocompatibility with enhanced bone formation for Mg–0.5Ca after 4 weeks of implantation compared with Mg–5.0Ca alloy. Higher initial corrosion rate with prolonged inflammation and rapid degradation was noticed in Mg–5.0Ca compared with Mg–0.5Ca alloy. Conclusions: The results suggest that Mg–0.5Ca alloy could be used as a temporary biodegradable implant material for clinical applications owing to its controlled in vivo degradation, reduced inflammation, and high bone-formation capability.


2021 ◽  
Vol 6 (1) ◽  
pp. 55-63
Author(s):  
Ming Gao ◽  
Di Na ◽  
Xiangqiao Ni ◽  
Lihui Song ◽  
Iniobong P. Etim ◽  
...  

2012 ◽  
Vol 109 (38) ◽  
pp. 15217-15222 ◽  
Author(s):  
Tara L. Deans ◽  
Anirudha Singh ◽  
Matthew Gibson ◽  
Jennifer H. Elisseeff

Combining synthetic biology and materials science will enable more advanced studies of cellular regulatory processes, in addition to facilitating therapeutic applications of engineered gene networks. One approach is to couple genetic inducers into biomaterials, thereby generating 3D microenvironments that are capable of controlling intrinsic and extrinsic cellular events. Here, we have engineered biomaterials to present the genetic inducer, IPTG, with different modes of activating genetic circuits in vitro and in vivo. Gene circuits were activated in materials with IPTG embedded within the scaffold walls or chemically linked to the matrix. In addition, systemic applications of IPTG were used to induce genetic circuits in cells encapsulated into materials and implanted in vivo. The flexibility of modifying biomaterials with genetic inducers allows for patterned placement of these inducers that can be used to generate distinct patterns of gene expression. Together, these genetically interactive materials can be used to characterize genetic circuits in environments that more closely mimic cells’ natural 3D settings, to better explore complex cell–matrix and cell–cell interactions, and to facilitate therapeutic applications of synthetic biology.


ACS Omega ◽  
2020 ◽  
Vol 5 (9) ◽  
pp. 4548-4557 ◽  
Author(s):  
Zheng Xi ◽  
Yunfeng Wu ◽  
Shouyang Xiang ◽  
Chu Sun ◽  
Yongxuan Wang ◽  
...  

2016 ◽  
Vol 7 ◽  
pp. 1620-1641 ◽  
Author(s):  
Alexandra M Greiner ◽  
Adria Sales ◽  
Hao Chen ◽  
Sarah A Biela ◽  
Dieter Kaufmann ◽  
...  

The extracellular environment of vascular cells in vivo is complex in its chemical composition, physical properties, and architecture. Consequently, it has been a great challenge to study vascular cell responses in vitro, either to understand their interaction with their native environment or to investigate their interaction with artificial structures such as implant surfaces. New procedures and techniques from materials science to fabricate bio-scaffolds and surfaces have enabled novel studies of vascular cell responses under well-defined, controllable culture conditions. These advancements are paving the way for a deeper understanding of vascular cell biology and materials–cell interaction. Here, we review previous work focusing on the interaction of vascular smooth muscle cells (SMCs) and endothelial cells (ECs) with materials having micro- and nanostructured surfaces. We summarize fabrication techniques for surface topographies, materials, geometries, biochemical functionalization, and mechanical properties of such materials. Furthermore, various studies on vascular cell behavior and their biological responses to micro- and nanostructured surfaces are reviewed. Emphasis is given to studies of cell morphology and motility, cell proliferation, the cytoskeleton and cell-matrix adhesions, and signal transduction pathways of vascular cells. We finalize with a short outlook on potential interesting future studies.


1997 ◽  
Vol 07 (03n04) ◽  
pp. 179-199 ◽  
Author(s):  
A. M. Ektessabi ◽  
J. Mouhyi ◽  
P. Louvette ◽  
L. Sennerby

A thin passive titanium dioxide, in its stoichiometric form, has a very high corrosion resistance, but the same conclusion can not be made on corrosion resistance of a surface which is not stoichiometrically titanium dioxide, or even a surface which is a composition of various elements and oxides. In practice, the implants available on the market have an oxide surface contaminated with other elements. The aim of this paper is to correlate clinical observations that show the deterioration of Ti made implants after certain period of insertion in the patients, and in vitro corrosion resistance of Ti implants with surface passive oxide layer. For this purpose, surface analysis of the retrieved failed implants were performed and in vivo animal experiments with relation to ion release from implants were done. Finally, on the basis of the clinical observation, in vivo animal test, and in vitro electrochemical corrosion test, a model is proposed to explain the corrosion and ion release from the Ti implant.


Materials ◽  
2020 ◽  
Vol 13 (15) ◽  
pp. 3257 ◽  
Author(s):  
Justyna Bącela ◽  
Magdalena Beata Łabowska ◽  
Jerzy Detyna ◽  
Anna Zięty ◽  
Izabela Michalak

In this literature review, the current state-of-art of coatings for orthodontic archwires’ increasing antimicrobial and relevant mechanical properties, such as surface topography, friction or corrosion resistance, has been presented. There is a growing request for orthodontic appliances, therefore, most researchers focus on innovative functional coatings to cover orthodontic archwires and brackets. Orthodontic appliances are exposed to the unfavorable oral cavity environment, consisting of saliva flow, food, temperature and appliance force. As a consequence, friction or biocorrosion processes may occur. This can affect the functionality of the orthodontic elements, causing changes in their microstructure, surface topography and mechanical properties. Furthermore, the material which the orthodontic archwire is made from is of particular importance in terms of the possible corrosion resistance. This is especially important for patients who are hypersensitive to metals, for example, nickel, which causes allergic reactions. In the literature, there are some studies, carried out in vitro and in vivo, mostly examining the antibacterial, antiadherent, mechanical and roughness properties of functional coatings. They are clinically acceptable but still some properties have to be studied and be developed for better results. In this paper the influence of additives such as nanoparticles of silver and nitrogen-doped TiO2 applied on orthodontic brackets by different methods on the antimicrobial properties was analyzed. Future improvement of coating techniques as well as modification of the archwire composition can reduce the release of nickel ions and eliminate friction and bacterial adhesion problems, thus accelerating treatment time.


Coatings ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1185
Author(s):  
Ionela Cristina Nica ◽  
Marcela Popa ◽  
Luminita Marutescu ◽  
Anca Dinischiotu ◽  
Simona Liliana Iconaru ◽  
...  

The implant-related infection as a consequence of bacterial adherence and biofilm formation remains one of the main causes of implant failure. Grace to recent advances in materials science, their great mechanical properties and their biocompatibility (both in vitro and in vivo), antibacterial coatings have gradually become a primary component of the global strategy for preventing microbial colonization. In the present work, novel antibacterial coatings containing hydroxyapatite nanoparticles doped with two different concentrations of samarium (5SmHAp and 10SmHAp) were obtained on Si substrates using the dip coating method. The morphology and physicochemical properties of these modified surfaces were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR). In addition, their antimicrobial effects and biocompatibility were assessed. The results showed a continuous and homogeneous layer, uniformly deposited, with no cracks or impurities. 5SmHAp and 10SmHAp surfaces exhibited significant antibiofilm activity and good biocompatibility without inducing cytotoxic effects in human gingival fibroblasts. All these findings indicate that samarium doped hydroxyapatite coatings could be great candidates for the development of new antimicrobial strategies.


2020 ◽  
Vol 12 (1) ◽  
pp. 2
Author(s):  
Yu-Jin Hwang ◽  
Young-Sin Choi ◽  
Yun-Ho Hwang ◽  
Hyun-Wook Cho ◽  
Dong-Geun Lee

Titanium and titanium alloys are promising implant metallic materials because of their high strengths, low elastic moduli, high corrosion resistances, and excellent biocompatibilities. A large difference in elastic modulus between the implant material and bone leads to a stress shielding effect, which increases the probability of implant separation or decrease in the bone density around it. Thus, a lower elastic modulus is required for a better implant metallic material. β titanium has a lower elastic modulus and high strength and can reduce the probability of the stress shielding effect. In this study, the applicability of the Ti–39Nb–6Zr+0.45Al alloy, obtained by adding a small amount of aluminum to the Ti–39Nb–6Zr alloy, as a biomedical implant material was evaluated. The mechanical properties and biocompatibility of the alloy were evaluated. The biocompatibility of Ti–39Nb–6Zr+0.45Al was similar to that of Ti–39Nb–6Zr according to in vitro and in vivo experiments. In addition, the biological corrosion resistances were evaluated through a corrosion test using a 0.9% NaCl solution, which is equivalent to physiological saline. The corrosion resistance was improved by the addition of Al. The yield strength of the Ti–39Nb–6Zr+0.45Al alloy was improved by approximately 20%. The excellent biocompatibility confirmed its feasibility for use as a biomedical implant material.


RSC Advances ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 6766-6775
Author(s):  
Veronica Iacovacci ◽  
Irene Naselli ◽  
Alice Rita Salgarella ◽  
Francesco Clemente ◽  
Leonardo Ricotti ◽  
...  

NdFeB magnets implantation in muscles could enable limb prostheses control by means of a myokinetic interface. Parylene C proved as optimal coating for corrosion resistance, in vitro biocompatibility and safe implantability in rabbit muscle.


Sign in / Sign up

Export Citation Format

Share Document