scholarly journals Electrodeposition, Characterization, and Corrosion Behavior of CoCrFeMnNi High-Entropy Alloy Thin Films

Coatings ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1367
Author(s):  
Ana-Maria Julieta Popescu ◽  
Florina Branzoi ◽  
Ionut Constantin ◽  
Mihai Anastasescu ◽  
Marian Burada ◽  
...  

Potentiostatic electrodeposition was used to obtain CoCrFeMnNi high-entropy alloy (HEA) thin films on copper substrate. An electrolyte based on a DMSO (dimethyl sulfoxide)-CH3CN (acetonitrile) organic compound was used for the HEA deposition. The microstructure of the high-entropy deposits before and after corrosion in artificial seawater was investigated by scanning electron microscopy (SEM) and energy dispersive spectrometry (EDS) investigation. SEM analysis revealed that compact and uniform film consists of compact and uniform 50 nm–5 μm particles that form the HEA films. The successful co-deposition of all five elements was highlighted by the energy dispersive spectrometry investigation (EDS). Electrochemical measurements carried out in an aerated artificial seawater solution under ambient conditions demonstrated the promising potential for application in the field of anti-corrosion protection, due to the protective behavior of the HEA thin films.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Chokkakula L. P. Pavithra ◽  
Reddy Kunda Siri Kiran Janardhana ◽  
Kolan Madhav Reddy ◽  
Chandrasekhar Murapaka ◽  
Joydip Joardar ◽  
...  

AbstractDiscovery of advanced soft-magnetic high entropy alloy (HEA) thin films are highly pursued to obtain unidentified functional materials. The figure of merit in current nanocrystalline HEA thin films relies in integration of a simple single-step electrochemical approach with a complex HEA system containing multiple elements with dissimilar crystal structures and large variation of melting points. A new family of Cobalt–Copper–Iron–Nickel–Zinc (Co–Cu–Fe–Ni–Zn) HEA thin films are prepared through pulse electrodeposition in aqueous medium, hosts nanocrystalline features in the range of ~ 5–20 nm having FCC and BCC dual phases. The fabricated Co–Cu–Fe–Ni–Zn HEA thin films exhibited high saturation magnetization value of ~ 82 emu/g, relatively low coercivity value of 19.5 Oe and remanent magnetization of 1.17%. Irrespective of the alloying of diamagnetic Zn and Cu with ferromagnetic Fe, Co, Ni elements, the HEA thin film has resulted in relatively high saturation magnetization which can provide useful insights for its potential unexplored applications.


2015 ◽  
Vol 358 ◽  
pp. 533-539 ◽  
Author(s):  
V. Soare ◽  
M. Burada ◽  
I. Constantin ◽  
D. Mitrică ◽  
V. Bădiliţă ◽  
...  

2022 ◽  
Vol 207 ◽  
pp. 114302
Author(s):  
Seungjin Nam ◽  
Sang Jun Kim ◽  
Moon J. Kim ◽  
Manuel Quevedo-Lopez ◽  
Jun Yeon Hwang ◽  
...  

2020 ◽  
Vol 275 ◽  
pp. 128097
Author(s):  
Xiaobin Feng ◽  
James Utama Surjadi ◽  
Yang Lu

Entropy ◽  
2019 ◽  
Vol 21 (2) ◽  
pp. 146 ◽  
Author(s):  
Wei-Bing Liao ◽  
Hongti Zhang ◽  
Zhi-Yuan Liu ◽  
Pei-Feng Li ◽  
Jian-Jun Huang ◽  
...  

Recently, high-entropy alloy thin films (HEATFs) with nanocrystalline structures and high hardness were developed by magnetron sputtering technique and have exciting potential to make small structure devices and precision instruments with sizes ranging from nanometers to micrometers. However, the strength and deformation mechanisms are still unclear. In this work, nanocrystalline Al0.3CoCrFeNi HEATFs with a thickness of ~4 μm were prepared. The microstructures of the thin films were comprehensively characterized, and the mechanical properties were systematically studied. It was found that the thin film was smooth, with a roughness of less than 5 nm. The chemical composition of the high entropy alloy thin film was homogeneous with a main single face-centered cubic (FCC) structure. Furthermore, it was observed that the hardness and the yield strength of the high-entropy alloy thin film was about three times that of the bulk samples, and the plastic deformation was inhomogeneous. Our results could provide an in-depth understanding of the mechanics and deformation mechanism for future design of nanocrystalline HEATFs with desired properties.


2015 ◽  
Vol 580 ◽  
pp. 71-76 ◽  
Author(s):  
B.R. Braeckman ◽  
F. Boydens ◽  
H. Hidalgo ◽  
P. Dutheil ◽  
M. Jullien ◽  
...  

2019 ◽  
Vol 162 ◽  
pp. 281-285 ◽  
Author(s):  
Y.P. Cai ◽  
G.J. Wang ◽  
Y.J. Ma ◽  
Z.H. Cao ◽  
X.K. Meng

Sign in / Sign up

Export Citation Format

Share Document