scholarly journals Application of High-Velocity Oxygen-Fuel (HVOF) Spraying to the Fabrication of Yb-Silicate Environmental Barrier Coatings

Coatings ◽  
2017 ◽  
Vol 7 (4) ◽  
pp. 55 ◽  
Author(s):  
Emine Bakan ◽  
Georg Mauer ◽  
Yoo Sohn ◽  
Dietmar Koch ◽  
Robert Vaßen
Author(s):  
M.A. Cole ◽  
R. Walker

Abstract Over the past 30 years, there has been considerable interest in the development of thermally sprayed thermal barrier coatings (TBCs) for aerospace and land based turbine applications. The use of TBCs enables higher operating temperatures, resulting in significant fuel efficiency savings. This paper reports on the development of dense Yttria Stabilised Zirconia (YSZ) thermal barrier coatings produced by High Velocity Oxygen Fuel (HVOF) spraying using acetylene as the fuel gas. The use of a high temperature gas erosion rig allowed the controlled evaluation of erodent size, velocity, impact angle, and temperature on coating performance. The work also covers the optimization of process parameters, including powder morphology, stand-off distance, oxygen to fuel ratio, gas pressures, and flowrates, and their effect on coating characteristics such as deposition efficiency, microhardness, and surface roughness.


2017 ◽  
Vol 69 (2) ◽  
pp. 325-332 ◽  
Author(s):  
Shiyu Cui ◽  
Qiang Miao ◽  
Wenping Liang ◽  
Yi Xu ◽  
Baiqiang Li

Purpose The purpose of this study is to prepare WC-10Co-4Cr coatings using two processes of plasma spraying and high-velocity oxygen fuel (HVOF) spraying. The decarburization behaviors of the different processes are analyzed individually. The microstructural characteristics of the as-sprayed coatings are presented and the wear mechanisms of the different WC–10Co–4Cr coatings are discussed in detail. Design/methodology/approach The WC–10Co–4Cr coatings were formed on the surface of Q235 steel by plasma and HVOF spraying. Findings Plasma spraying causes more decarburizing decomposition of the WC phase than HVOF spraying. In the plasma spraying process, η(Cr25Co25W8C2) phase appears and the C content decreases from the top surface of the coating to the substrate. Practical implications In this study, two WC–10Co–4Cr coatings on Q235 steel prepared by plasma and HVOF spraying were compared with respect to the sliding wear behavior. Originality/value The wear mechanisms of the plasma- and HVOF-sprayed coatings were abrasive and oxidation, respectively.


2011 ◽  
Vol 396-398 ◽  
pp. 472-477
Author(s):  
Yan Liu ◽  
Li Jun Wang ◽  
Hui Chen ◽  
Ming Jing Tu

Nanostructured WC-12Co coating was prepared by means of High Velocity Oxygen Fuel (HVOF) spraying technology in this research. The erosion wear experiment system was developed to simulate the working condition to study the erosion wear properties. The corundum sand with main composition of Al2O3 and quartz sand with main composition of SiO2 were used to investigate the effects of sand variety on the erosion wear properties. The erosion wear failure mechanism of the coatings was also analyzed. The results show that the failure mechanism of the coating eroded by corundum sand is cracking between WC grains, while for the coating eroded by quartz sand, the failure mechanism is microcutting and microploughing.


1999 ◽  
Vol 122 (1) ◽  
pp. 43-49 ◽  
Author(s):  
Y. Itoh ◽  
M. Saitoh ◽  
M. Tamura

High velocity oxygen-fuel (HVOF) spraying system in open air has been established for producing the coatings that are extremely clean and dense. It is thought that the HVOF sprayed MCrAlY (M is Fe, Ni and/or Co) coatings can be applied to provide resistance against oxidation and corrosion to the hot parts of gas turbines. Also, it is well known that the thicker coatings can be sprayed in comparison with any other thermal spraying systems due to improved residual stresses. However, thermal and mechanical properties of HVOF coatings have not been clarified. Especially, the characteristics of residual stress, that are the most important property from the view point of production technique, have not been made clear. In this paper, the mechanical properties of HVOF sprayed MCrAlY coatings were measured in both the case of as-sprayed and heat-treated coatings in comparison with a vacuum plasma sprayed MCrAlY coatings. It was confirmed that the mechanical properties of HVOF sprayed MCrAlY coatings could be improved by a diffusion heat treatment to equate the vacuum plasma sprayed MCrAlY coatings. Also, the residual stress characteristics were analyzed using a deflection measurement technique and a X-ray technique. The residual stress of HVOF coating was reduced by the shot-peening effect comparable to that of a plasma spray system in open air. This phenomena could be explained by the reason that the HVOF sprayed MCrAlY coating was built up by poorly melted particles. [S0742-4795(00)00701-8]


2017 ◽  
Vol 26 (7) ◽  
pp. 1732-1740 ◽  
Author(s):  
A. R. C. Nascimento ◽  
F. B. Ettouil ◽  
C. Moreau ◽  
S. Savoie ◽  
R. Schulz

Sign in / Sign up

Export Citation Format

Share Document