scholarly journals A Novel Method for nZEB Internal Coverings Design Based on Neural Networks

Coatings ◽  
2019 ◽  
Vol 9 (5) ◽  
pp. 288 ◽  
Author(s):  
José A. Orosa ◽  
Diego Vergara ◽  
Ángel M. Costa ◽  
Rebeca Bouzón

Research from the International Energy Agency about indoor ambiences and nearly zero energy buildings (nZEB) in the past has been centred on different aspects such as the prediction of indoor conditions as a function of the weather using laboratory material properties for simulations and real sampled data for validation. Thus, it is possible to use real data for defining behavioural groups of indoor ambiences as a function of real vapour permeability of internal coverings. However, this method is not suitable for modelling it and predicting its behaviour under weather changes, which is of interest to improve the method of selection and use of building construction materials. In this research, artificial intelligence procedures were employed as the first model of permeable coverings material behaviour to provide a newer understanding of building materials and applications for the generation of new control procedures between the mechanical and electronic point of view of building construction materials.

Author(s):  
Aysem Berrin Cakmakli

There is a growing universal awareness of protecting the living and non-living environment and making enlightened decisions to achieve a sustainable development without destruction of the natural resources. In this point of view, selecting building materials according to their energy and health performances gains importance in sustainable design. 3Rs (reducing, reusing, recycling), and supplying a healthy, non-hazardous indoor air for building occupants are two important parameters of environmental life-cycle assessment for materials. Information on exposure to gases and vapors from synthetic materials made from petrochemicals, to heavy metals and pesticides, and to some combustion pollutants that cause acid rain should be determined by analyzing environmental product declarations or material specifications. After studying on building materials individually, they are analyzed in the form of tables for four different stages; manufacturing, application, usage, demolition phase. Consequently, this chapter can guide the designer and engineer to think on the elements of design and construction activity.


The rapid increase of plastics waste produced worldwide today poses a danger to human health because of the pollution caused by the unsafe disposal and non-biodegradability of this waste combined with toxic gas emissions during incineration. Globally, PET (polyethylene terephalate) is commonly used for bottling water and other plastic containers. Recycling the waste would be an additional benefit. This study focuses some researchers on the forms, methods of recycling and various literature applications of PET wastes. Recycled PET can of course be used when combined with the sand aggregate to manufacture of various construction materials, such as tiles, bricks, paving stones etc. This research focuses on its application as it attracts substantial building materials such as the manufacture of various PET waste tiles and their unique mechanical , physical and chemical properties; There are some important studies discussed in relation to PET waste, recycling methods , and results from the study. Even various applications are described here. Its usefulness is further defined as roofing Composite concrete, floor tiling and other applications


2021 ◽  
Author(s):  
Abdelrhman Muhamed Fahmy Sayed Ahmed ◽  
Fatma Muhamed Helmy

Abstract Abusir is the name of an elaborate burial area, dotted with 19 pyramids other temples, stretching on the western side of the Nile from the south of the Giza Plateau to the northern rim of Saqqara. It seems to have been created as the resting site for the Pharaos dated from 2494 to 2345 BC. The name Abusir, originally spoken as Busiri, means” temple of Osiris”. Over time, the name has become so popular, that more than 60 villages now carry this name. But only one is the archaeological site. This paper does not refer to all of the Abusir archaeological area, but focuses one of its most important sites: Sahure pyramid, one of Egypt’s little known, but heavily damaged treasure. One of the highlights of the relevant research is the discovery of a piece of cement (Basaltic mortar/concrete), which consists of several materials and which is harder than any cement produced today and detection of a clear and significant Anorthite mineral (Plagioclase) in the mortar sample which had been proven by XRD, XRF (analysis) and Polarized light microscope (investigation). The main objectives of this paper are 1) to reveal and identify the construction materials of the pyramid and the construction of the pyramid,2) to evaluate the durability and vulnerability of the Ancient construction materials of Sahure pyramid,3) to compare the decayed patterns of the different construction materials, 4) to study the pyramid building materials from geological, meteorological, geochemical, petrological and petrophysical point of view, and 5) to present a proposal for scientific conservation and protection of the pyramid. Laboratories and field studies have been carried out by researchers from various countries to investigate and understand the problems of the pyramid leading to the final results which confirmed the impact of the geo environment conditions on the structural and engineering stability of the pyramid.


2018 ◽  
Vol 149 ◽  
pp. 01079
Author(s):  
Abbou Mohammed ◽  
Moulay Omar Hassan ◽  
Semcha Abdélaziz ◽  
Kazi-Aoual Fatiha

In the context of sustainable local development of the Adrar region, one of the largest regions in the Algerian Sahara. The search for local useful substances has been initiated by the Algerian state to cover the need for building materials in the construction industry. However, from a geological point of view, the Adrar zone is located in the extension of the primary chain of the Ougarta which separates two sedimentary basins of Reggane and Timimoun, as well as the basin of Sbâa. In this context, an experimental study is focused on the characterization of clay deposits, with a view to their valorization in the construction materials industry (ceramics) sector, with the aim of contributing to the use of local materials.


2021 ◽  
Vol 286 ◽  
pp. 02006
Author(s):  
Cristian Gheorghiu ◽  
Mircea Scripcariu ◽  
Miruna Gheorghiu ◽  
Alexandra Gabriela Dobrica

In this paper an overview of the construction materials industry, from an embedded energy point of view will be presented. A case study for four brick factories in Romania will also analyzed. The Energy Performance Indicators (EnPI) of each factory will be evaluated and compared with the global reference values and the most technically and economically feasible Energy Performance Improvement Actions (EPIAs) will be presented. The replicability of these EPIA’s in different materials manufacturing industries will be also analyzed.


Author(s):  
Aysem Berrin Cakmakli

There is a growing universal awareness of protecting the living and non-living environment and making enlightened decisions to achieve a sustainable development without destruction of the natural resources. In this point of view, selecting building materials according to their energy and health performances gains importance in sustainable design. 3Rs (reducing, reusing, recycling), and supplying a healthy, non-hazardous indoor air for building occupants are two important parameters of environmental life-cycle assessment for materials. Information on exposure to gases and vapors from synthetic materials made from petrochemicals, to heavy metals and pesticides, and to some combustion pollutants that cause acid rain should be determined by analyzing environmental product declarations or material specifications. After studying on building materials individually, they are analyzed in the form of tables for four different stages; manufacturing, application, usage, demolition phase. Consequently, this chapter can guide the designer and engineer to think on the elements of design and construction activity.


Author(s):  
O. J. Ameh ◽  
K. A Shittu

There is increased advocacy for low-carbon environment globally, necessitating the promotion of ecologically friendly building materials. The health and environmental hazards associated with conventional building material production, as well as the high cost on the economy for the importation of machinery for their production; the massive utilisation of wood resources for construction purposes, and its effect on climate change, necessitates the search for alternative construction materials. The purpose of this study is to examine the sustainability of a composite board made from Bambusa vulgaris for building construction. A 600 mm x 600 mm wall and floor-board comprising three sample units for different thicknesses; 10 mm, 20 mm and 40 mm were produced from each segment; top, middle, and bottom, of the bamboo culm with approximately 8-10 mm laminate. The results revealed average compressive strength values for the bottom, middle, and top bamboo segments of 31.39 N/mm2, 29.38 N/mm2, and 24.99 N/mm2, respectively. The highest impact bending strength of 33.66 N/mm2 and 27.94 N/mm2 occurs at the middle and top segments of the bamboo species respectively. Modulus of Rupture decreases from the bottom to the top segment of the bamboo species with values of 76.43 N/mm2, 62.33 N/mm2, and 56.70 N/mm2, respectively. Furthermore, thermal properties indicate that it is a good material for interior walls, floors, and ceiling finishes. These findings have far-reaching implications for practice and economic development; regarding reduction in the cost of materials, and hence affordability for low-income housing; overall safety of the environment; and employment opportunities for Nigerian youths along the construction value chain.


2017 ◽  
Vol 16 (2) ◽  
pp. 02
Author(s):  
W. Balmant

There is currently a strong UN and IPCC-led campaign promoting the rejection of oil-derived fuels because of the risk of global warming. However, global demand for oil does not decline, but tends to increase to 100 million barrels per day in 2018 according to the International Energy Agency (IEA). This clearly demonstrates that a speech is not enough, but new sources of energy are needed that can unequivocally replace oil from a technical and economic point of view. In this context, one of the possible solutions is the introduction of biorefineries, which have the capacity to process biomass from different sources, generating several products and fuels derived from biomass. An example of biorefinery is the production of ethanol from sugarcane bagasse, where all sugarcane biomass is harvested for ethanol generation. However, the processes involving biorefineries are still in laboratory or pilot scale, because these processes are not yet economically feasible. One of the crucial bottlenecks of a biorefinery is the energy cost of the processes involved, which is often greater than the energy gain obtained. One way to reduce the energy costs of these processes is thermodynamic optimization. For this, mathematical models are needed that are capable of describing all the processes that occur within a biorefinery. Unfortunately, there is no such tool available, which makes thermodynamic optimization of biorefinery impossible. However, for oil refining, this tool is already available even in the form of commercial software such as Aspen Plus, after all petroleum refining is an industry more than a hundred years old and so the exploitation of oil is so profitable. If biorefineries want to compete with the oil industry, it is necessary to develop simulation tools that can be used for thermodynamic optimization, so that the processes of a biorefinery become economically feasible.


2021 ◽  
Vol 352 ◽  
pp. 00001
Author(s):  
Stanislava Gašpercová ◽  
Linda Makovická Osvaldová ◽  
Erik Richnavský

The future of the whole world focuses on reducing waste produced by people. As the construction sector is one of the biggest producers of waste, a great deal of effort has been made to introduce this trend in modern construction. The “green” building sector, therefore, draws attention to natural and recyclable building materials. These include natural thermal insulation such as cork, fiberboard, hemp insulation, and even sheep wool insulation. Almost all types of such insulation are made from waste materials which, were they not reused in the form of thermal insulation, would end up as municipal or biodegradable waste. At the same time, we should point out that almost all “green” construction materials are flammable. This feature is not very advantageous from the point of view of fire protection and it can significantly affect the fire safety of a construction. It is for this reason that the main objective of this research was to determine the impact of a radiant heat source on various types of thermal insulation used as plasterboard filling and to evaluate the possibilities of their use in sandwich constructions for fire protection purposes.


2013 ◽  
Vol 2013 ◽  
pp. 1-15 ◽  
Author(s):  
A. Naess ◽  
O. Gaidai ◽  
O. Karpa

This paper details a method for extreme value prediction on the basis of a sampled time series. The method is specifically designed to account for statistical dependence between the sampled data points in a precise manner. In fact, if properly used, the new method will provide statistical estimates of the exact extreme value distribution provided by the data in most cases of practical interest. It avoids the problem of having to decluster the data to ensure independence, which is a requisite component in the application of, for example, the standard peaks-over-threshold method. The proposed method also targets the use of subasymptotic data to improve prediction accuracy. The method will be demonstrated by application to both synthetic and real data. From a practical point of view, it seems to perform better than the POT and block extremes methods, and, with an appropriate modification, it is directly applicable to nonstationary time series.


Sign in / Sign up

Export Citation Format

Share Document