scholarly journals Passive Vibration Reduction Analysis of the Mistuned Blisk Deposited Hard Coating Using Modified Reduced-Order Model

Coatings ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 812
Author(s):  
Feng Gao ◽  
Bingqiang Li ◽  
Xiuting Liu

To improve the reliability and safety of the mistuned blisk (integrally bladed disk), a novel strategy for passive vibration reduction by the hard coating was developed, and the vibration and damping characteristics of the HCM (hard-coating mistuned) blisk were investigated in this work. Firstly, by the proposed criterion called FDSD (frequency difference and its standard deviation), a classical reduced-order model established by the component mode synthesis method was modified to carry out modal analysis for high computational efficiency. Then, forced vibration responses of the HCM blisk were achieved by the Rayleigh damping model. Next, a specific benchmark of a mistuned blisk deposited NiCoCrAlY + YSZ hard coating was chosen to conduct numerical calculations, and the results were compared with those obtained from the FOM (full-order model) and experimental test, respectively. Finally, the influence of the hard coating and coating thickness on the mistuned blisk were investigated, in particular.

Author(s):  
Trung-Son Nguyen ◽  
Tung Le Duc ◽  
Son Thanh Tran ◽  
Jean-Michel Guichon ◽  
Olivier Chadebec

Purpose To synthesize equivalent circuit obtained from reduced order model of large scale inductive PEEC circuits. Design/methodology/approach This paper describes an original approach for reducing and synthesizing large parasitic RLM electrical circuits coming from inductive Partial Element Equivalent Circuit (PEEC) models. The proposed technique enables the re-use of the reduced order model in the time domain circuit simulation context. Findings The paper shows how to use a synthesis method to realize an equivalent circuit issued from compressed PEEC circuits. Originality/value The coupling between methods PEEC and a compressed method as Fast Multipole Method (FMM) in order to reduce time and space consuming are well-known. The innovation here is to realise a smaller circuit equivalent with the original large scale PEEC circuits to use in temporal simulation tools. Moreover, this synthesis method reduces time and memories for modelling industrial application while maintaining high accuracy.


Author(s):  
Hongyuan Zhang ◽  
Huiqun Yuan ◽  
Wenjun Yang ◽  
Tianyu Zhao

Ignoring the effect of prestress can increase the gap between the actual results and research results, which is not conducive to improve the vibration localization of bladed disk system and the finite element calculation. To improve the vibration localization and computational efficiency, the prestressed component mode synthesis method (PCMSM) was adopted to establish the finite element reduced-order model considering prepress. Since the main calculation precision of the prestressed component mode synthesis method was the mode truncation number, calculation was made to the eigenfrequency of different mode truncations; the contrast and analysis were made to the calculation result of blisk model, minimum mode truncation number under the above calculation precision was obtained, and freedom of the model was greatly reduced. The finite element reduced-order model was collocated to make an analysis of the vibration response characteristics of mistuned bladed disk. From the aforementioned analysis, the maximum amplitude of mistuned bladed disk was not only associated with the mistuning value of blade but also related to the frequency of adjacent blade; on the basis of such a rule, the finite element reduced-order model was adopted to raise an optimization algorithm for the blade vibration reduction and arrangement. Results have revealed that the optimization algorithm has made an adequate consideration of both model precision and calculation speed. The maximum dimensionless amplitude of blade vibration under three mistuning patterns and upon optimization is greatly reduced by 32.8%, 30.1%, and 28%. The localization factor of blade vibration under three mistuning patterns and upon optimization is greatly reduced by 64%, 68.5%, and 57.2%. The optimization algorithm based on the prestressed component mode synthesis method gets the optimization value by not more than 15 iterations. The optimization algorithm has greatly reduced the amplitude of the blade and obviously dampened vibration localization of the bladed disk system.


Author(s):  
Mohit Law ◽  
A. Srikantha Phani ◽  
Yusuf Altintas

Dynamic response of a machine tool structure varies along the tool path depending on the changes in its structural configurations. The productivity of the machine tool varies as a function of its frequency response function (FRF) which determines its chatter stability and productivity. This paper presents a computationally efficient reduced order model to obtain the FRF at the tool center point of a machine tool at any desired position within its work volume. The machine tool is represented by its position invariant substructures. These substructures are assembled at the contacting interfaces by using novel adaptations of constraint formulations. As the tool moves to a new position, these constraint equations are updated to predict the FRFs efficiently without having to use computationally costly full order finite element or modal models. To facilitate dynamic substructuring, an improved variant of standard component mode synthesis method is developed which automates reduced order determination by retaining only the important modes of the subsystems. Position-dependent dynamic behavior and chatter stability charts are successfully simulated for a virtual three axis milling machine, using the substructurally synthesized reduced order model. Stability lobes obtained using the reduced order model agree well with the corresponding full-order system.


Sign in / Sign up

Export Citation Format

Share Document