scholarly journals Asphaltenes at Oil/Gas Interfaces: Foamability Even with No Significant Surface Activity

2018 ◽  
Vol 3 (1) ◽  
pp. 2
Author(s):  
Mélanie Arangalage ◽  
Jean-Philippe Gingras ◽  
Nicolas Passade-Boupat ◽  
François Lequeux ◽  
Laurence Talini

In the oil industry, oil foams can be found at different steps from the crude oil treatment to the gas stations. Their lifetime can sometimes reach several hours and be much longer than the residence times available for gas/liquid separation. However, the conditions of formation and stability of such foams have been poorly studied in the literature, in contrast to the foamability of aqueous systems. On the fields, it is currently observed that crude oils enriched with asphaltenes form particularly stable foams. In this work, we have studied the influence of asphaltenes on the foamability of oil mixtures. All the experiments were performed on model systems of crude oils, that-is-to-say decane/toluene mixtures containing asphaltenes at concentrations ranging from 0.01 to 5 wt%. We in particular demonstrate that, within the investigated concentration range, asphaltenes from two different wells do not have any significant surface active properties despite their contribution to the foamability of oil mixtures. We show that the formation of an asphaltene layer at the interface with air that has been evidenced in the past results from solvent evaporation. Using a recently developed experiment based on the Marangoni effect with our model oils, we demonstrate that asphaltenes are not surface active in those oils. We further characterize the oil foamability by measuring the lifetime of the foam formed by blowing nitrogen through the liquid in a column. At concentrations larger than 1 wt%, asphaltenes significantly enhance the foamability of the oil mixtures. Moreover, the closer the asphaltenes are to their limit of precipitation the larger the foamability. However, we evidence that the oil mixtures themselves foam and we show the importance to consider that effect on the foamability. In addition, we observe that the foamability of the asphaltenes solutions unexpectedly varies with the initial height of the liquid in the column. We suggest that, although not significantly modifying the surface tension, the asphaltenes could be trapped at the oil/gas interface and thus prevent bubble coalescence.

2021 ◽  
Vol 4 (6) ◽  
pp. 53-60
Author(s):  
Zhe Zhang

This study aims to find out the relevance of marketing strategies for gas stations in China. According to IBISWorld, the companies holding the largest market shares in China’s gas station industry include China Petrochemical Corporation, China National Petroleum Corporation, Sinochem Corporation, China National Offshore Oil Corporation, and BP (China) Holdings Limited. Marketing has changed over the past several years. Similarly, gas station marketing is all about more customers, greater sales, and higher profits. Technology provides many different marketing tools to see more fresh faces at the door, increase repeat sales, and improve profits. Word-of-mouth advertising should be encouraged, especially when contests are being held. The prizes from these contests may include car essentials, free coffee, free car wash, or coupons to be used at convenience stores. Customers who have won these contests would surely go around advertising the particular gas station, ultimately bringing in more customers. Other than that, managers can boost the sales volume through radio promotions as well. This study also aims to give future businessmen and women some ideas on how to deal with different kinds of strategies when it comes to marketing, especially in China in hope to cater and prove to the people of China the possibility of promoting businesses, such as the oil industry.


Sci ◽  
2021 ◽  
Vol 3 (4) ◽  
pp. 44
Author(s):  
Summi Rai ◽  
Eliza Acharya-Siwakoti ◽  
Ananda Kafle ◽  
Hari Prasad Devkota ◽  
Ajaya Bhattarai

In response to increasing natural surfactant demand and environmental concerns, natural plant-based surfactants have been replacing synthetic ones. Saponins belong to a class of plant metabolites with surfactant properties that are widely distributed in nature. They are eco-friendly because of their natural origin and biodegradable. To date, many plant-based saponins have been investigated for their surface activity. An overview of saponins with a particular focus on their surface-active properties is presented in this article. For this purpose, works published in the past few decades, which report better surfactant relevant properties of saponins than synthetic ones, were extensively studied. The investigations on the potential surfactant application of saponins are also documented. Moreover, some biological activities of saponins such as antimicrobial activity, antidiabetic activity, adjuvant potentials, anticancer activity, and others are reported. Plants rich in saponins are widely distributed in nature, offering great potential for the replacement of toxic synthetic surfactants in a variety of modern commercial products and these saponins exhibit excellent surface and biological activities. New opportunities and challenges associated with the development of saponin-based commercial formulations in the future are also discussed in detail.


2013 ◽  
pp. 109-128 ◽  
Author(s):  
C. Rühl

This paper presents the highlights of the third annual edition of the BP Energy Outlook, which sets out BP’s view of the most likely developments in global energy markets to 2030, based on up-to-date analysis and taking into account developments of the past year. The Outlook’s overall expectation for growth in global energy demand is to be 36% higher in 2030 than in 2011 and almost all the growth coming from emerging economies. It also reflects shifting expectations of the pattern of supply, with unconventional sources — shale gas and tight oil together with heavy oil and biofuels — playing an increasingly important role and, in particular, transforming the energy balance of the US. While the fuel mix is evolving, fossil fuels will continue to be dominant. Oil, gas and coal are expected to converge on market shares of around 26—28% each by 2030, and non-fossil fuels — nuclear, hydro and renewables — on a share of around 6—7% each. By 2030, increasing production and moderating demand will result in the US being 99% self-sufficient in net energy. Meanwhile, with continuing steep economic growth, major emerging economies such as China and India will become increasingly reliant on energy imports. These shifts will have major impacts on trade balances.


2021 ◽  
Vol 640 (5) ◽  
pp. 052014
Author(s):  
A S Kaishev ◽  
N S Kaisheva ◽  
H N Gyulbyakova ◽  
E A Maslovskaya ◽  
V A Karpenko

1990 ◽  
Vol 32 (5) ◽  
Author(s):  
ThomasR. Neu ◽  
Thomas H�rtner ◽  
Karl Poralla

Sign in / Sign up

Export Citation Format

Share Document