scholarly journals Equilibrium, Kinetic, and Thermodynamic Studies of Cationic Dyes Adsorption on Corn Stalks Modified by Citric Acid

2021 ◽  
Vol 5 (4) ◽  
pp. 52
Author(s):  
Liudmyla Soldatkina ◽  
Marianna Yanar

The modification of agricultural wastes and their use as low-cost and efficient adsorbents is a prospective pathway that helps diminish waste and decrease environmental problems. In the present research, the natural adsorption capacity of corn stalks (CS) was improved by modification of their surface with citric acid. The adsorption capacity of the modified corn stalks (CS-C) was determined with the help of cationic dyes (methylene blue and malachite green). The equilibrium, kinetics, and thermodynamics of the cationic dyes on CS-C were studied. The Langmuir isotherm model best fitted the data both for methylene blue and malachite green adsorption on CS-C. The adsorption kinetics of the cationic dyes was well described by the pseudo-second order model. Thermodynamic studies revealed that adsorption of the cationic dyes on CS-C was an endothermic process. Negative results of ΔGo (between −31.8 and −26.3 kJ mol−1) indicated that the adsorption process was spontaneous in all the tested temperatures. The present study verified that citric acid-modified corn stalks can be used as a low-cost and effective adsorbent for removal of cationic dyes from aqueous solutions.

2016 ◽  
Vol 75 (2) ◽  
pp. 350-357
Author(s):  
Graham Dawson ◽  
Wei Chen ◽  
Luhua Lu ◽  
Kai Dai

The adsorption properties of two nanomorphologies of trititanate, nanotubes (TiNT) and plates (TiNP), prepared by the hydrothermal reaction of concentrated NaOH with different phases of TiO2, were examined. It was found that the capacity for both morphologies towards methylene blue (MB), an ideal pollutant, was extremely high, with the TiNP having a capacity of 130 mg/g, higher than the TiNT, whose capacity was 120 mg/g at 10 mg/L MB concentration. At capacity, the well-dispersed powders deposit on the floor of the reaction vessel. The two morphologies had very different structural and adsorption properties. TiNT with high surface area and pore volume exhibited exothermic monolayer adsorption of MB. TiNP with low surface area and pore volume yielded a higher adsorption capacity through endothermic multilayer adsorption governed by pore diffusion. TiNP exhibited a higher negative surface charge of −23 mV, compared to −12 mV for TiNT. The adsorption process appears to be an electrostatic interaction, with the cationic dye attracted more strongly to the nanoplates, resulting in a higher adsorption capacity and different adsorption modes. We believe this simple, low cost production of high capacity nanostructured adsorbent material has potential uses in wastewater treatment.


2019 ◽  
Vol 79 (8) ◽  
pp. 1561-1570
Author(s):  
Wei Chen ◽  
Fengting Chen ◽  
Bin Ji ◽  
Lin Zhu ◽  
Hongjiao Song

Abstract The adsorption behavior and the underlying mechanism of methylene blue (MB) sorption on biochars prepared from different feedstocks at 500 °C were evaluated. The biochar feedstocks included Magnolia grandiflora Linn. leaves biochar (MBC), pomelo (Citrus grandis) peel biochar (PBC) and badam shell biochar (BBC). The results of characterizing and analyzing the samples showed that different biochars had different effects on the adsorption of MB. It could be found that MBC had the best adsorption effect on MB due to its largest average pore diameter of 5.55 nm determined by Brunauer-Emmett-Teller analysis. Under the optimal conditions, the maximum adsorption capacities of BBC, PBC and MBC were 29.7, 85.15 and 99.3 mg/g, respectively. The results showed that the amount of adsorption was affected by the pH value. The maximum adsorption capacity of MBC was 46.99 mg/g when it was at pH of 3, whereas for the same experimental conditions the maximum adsorption capacity of BBC and PBC was 25.29 mg/g at pH of 11 and 36.08 mg/g at pH of 7, respectively. Therefore, MBC was found to be a most efficient low-cost adsorbentl for dye wastewater treatment compared with BBC and PBC, and it had the best removal effect under acidic conditions.


Author(s):  
E Yulianti ◽  
R Mahmudah ◽  
S N Khalifah ◽  
A Prasetyo ◽  
A S Irviyanti ◽  
...  

2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Adugna Nigatu Alene ◽  
Gietu Yirga Abate ◽  
Adere Tarekegne Habte ◽  
Desiew Mekuanint Getahun

The aim of this study was to investigate the adsorption characteristics of malachite green (MG) dye onto the raw (RLAPW) and activated (ALAPW) surface of Lupinus albus seed peel waste prepared via physicochemical activation under alkaline condition as a dye adsorbent. Proximate analysis, surface area (Sears’ method), point of zero charge (pHzpc), and FTIR analysis were used to characterize the adsorbents. The effects of operational parameters such as pH (4) for ALAPW and pH (6) for RLAPW, adsorbent dose (0.2 g), initial dye concentration (30 mg/L), contact time (60 min), and temperature (298 K) were optimized. The experimental data well fitted with the Freundlich adsorption isotherm with the adsorption capacity of 7.3 mg/g for activated Lupinus albus seed peel waste (ALAPW) and Sips isotherm for raw Lupinus albus seed peel waste (RLAPW) with the adsorption capacity of 6.6 mg/g. The kinetics data well fitted to pseudo-second-order kinetic model for both adsorbents. Thermodynamic study revealed that the bioadsorption process using bioadsorbents was spontaneous and exothermic in nature. Desorption experiment was conducted and showed desorption efficiency at an acidic pH of 2. The results showed that the prepared adsorbents exhibited good adsorption capacity and can be used as an alternative adsorbent for the adsorptive removal of malachite green dyes.


In the present investigation , neem leaves are obtained from the agricultural fields and its potential for the removal of dye is tested with the model system of methylene blue in water . The MB has health hazards, its been reported that exposures to the dyes cause allergic reactions, and hence its reflected as toxic. The results obtained from batch experiments are quite useful in giving information about the efficacy of dye-adsorbent system. The influence of factors such as the initial pH value, adsorbent dose, and time of contact was investigated. The results indicate that the percentage removal also increased with the rise in the adsorption capacity (qe). 82% of colour elimination can be obtained at the dose of 100g/l NLP for methylene blue of 10mg/l concentration. The optimal parameters for this experiment were 10mg/l for initial dye concentration, 5gm/50ml adsorbent dosage and pH 8. In the batch system, the adsorption capacity was increased when the parameters were increased until it achieved the equilibrium. Langmuir adsorption isotherm graphics plotted with l/qevis 1/Ce. Trend lines for the adsorption data of different concentration of methylene blue with neem leave as adsorbent is plotted. The linear regression was piloted using plot l/qevis 1/Ce; it was found that R2 value are quite closer to 1 signifying Langmuir isotherm as a good fit for this experimental data. Results indicated that neem leaves has potential to remove Methylene Blue Dye from aqueous streams and can be successfully used as a low cost adsorbent.


2020 ◽  
Vol 15 (2) ◽  
pp. 525-537 ◽  
Author(s):  
Neza Rahayu Palapa ◽  
Tarmizi Taher ◽  
Bakri Rio Rahayu ◽  
Risfidian Mohadi ◽  
Addy Rachmat ◽  
...  

The preparation of CuAl LDH and biochar (BC) composite derived from rice husk and its application as a low-cost adsorbent for enhanced adsorptive removal of malachite green has been studied. The composite was prepared by a one-step coprecipitation method and characterized by X-ray Diffraction (XRD), Fourier Transform Infra Red (FTIR), Brunauer-Emmett-Teller (BET), and Scanning Electron Microscopy - Energy Dispersive X-ray (SEM−EDX). The result indicated that CuAl LDH was successfully incorporated with the biochar that evidenced by the broadening of XRD peak at 2θ = 24° and the appearance of a new peak at 1095 cm−1 on the FTIR spectra. The BET surface area analysis revealed that CuAl/BC composite exhibited a larger surface area (200.9 m2/g) that the original CuAl LDH (46.2 m2/g). Surface morphological changes also confirmed by SEM image, which showed more aggregated particles. The result of the adsorption study indicated the composite material was efficient in removing malachite green with Langmuir maximum adsorption capacity of CuAl/BC reaching 470.96 mg/g, which is higher than the original CuAl LDH 59.523 mg/g. The thermodynamic analysis suggested that the adsorption of malachite green occurs spontaneously (ΔG < 0 at all tested temperature) and endothermic nature. Moreover, the CuAl/BC composite showed strong potential as a low-cost adsorbent for cationic dye removal since it showed not only a high adsorption capacity but also good reusability. Copyright © 2020 BCREC Group. All rights reserved


Sign in / Sign up

Export Citation Format

Share Document