Insights into the mechanism of methylene blue removed by novel and classic biochars

2019 ◽  
Vol 79 (8) ◽  
pp. 1561-1570
Author(s):  
Wei Chen ◽  
Fengting Chen ◽  
Bin Ji ◽  
Lin Zhu ◽  
Hongjiao Song

Abstract The adsorption behavior and the underlying mechanism of methylene blue (MB) sorption on biochars prepared from different feedstocks at 500 °C were evaluated. The biochar feedstocks included Magnolia grandiflora Linn. leaves biochar (MBC), pomelo (Citrus grandis) peel biochar (PBC) and badam shell biochar (BBC). The results of characterizing and analyzing the samples showed that different biochars had different effects on the adsorption of MB. It could be found that MBC had the best adsorption effect on MB due to its largest average pore diameter of 5.55 nm determined by Brunauer-Emmett-Teller analysis. Under the optimal conditions, the maximum adsorption capacities of BBC, PBC and MBC were 29.7, 85.15 and 99.3 mg/g, respectively. The results showed that the amount of adsorption was affected by the pH value. The maximum adsorption capacity of MBC was 46.99 mg/g when it was at pH of 3, whereas for the same experimental conditions the maximum adsorption capacity of BBC and PBC was 25.29 mg/g at pH of 11 and 36.08 mg/g at pH of 7, respectively. Therefore, MBC was found to be a most efficient low-cost adsorbentl for dye wastewater treatment compared with BBC and PBC, and it had the best removal effect under acidic conditions.

In the present investigation , neem leaves are obtained from the agricultural fields and its potential for the removal of dye is tested with the model system of methylene blue in water . The MB has health hazards, its been reported that exposures to the dyes cause allergic reactions, and hence its reflected as toxic. The results obtained from batch experiments are quite useful in giving information about the efficacy of dye-adsorbent system. The influence of factors such as the initial pH value, adsorbent dose, and time of contact was investigated. The results indicate that the percentage removal also increased with the rise in the adsorption capacity (qe). 82% of colour elimination can be obtained at the dose of 100g/l NLP for methylene blue of 10mg/l concentration. The optimal parameters for this experiment were 10mg/l for initial dye concentration, 5gm/50ml adsorbent dosage and pH 8. In the batch system, the adsorption capacity was increased when the parameters were increased until it achieved the equilibrium. Langmuir adsorption isotherm graphics plotted with l/qevis 1/Ce. Trend lines for the adsorption data of different concentration of methylene blue with neem leave as adsorbent is plotted. The linear regression was piloted using plot l/qevis 1/Ce; it was found that R2 value are quite closer to 1 signifying Langmuir isotherm as a good fit for this experimental data. Results indicated that neem leaves has potential to remove Methylene Blue Dye from aqueous streams and can be successfully used as a low cost adsorbent.


2019 ◽  
Vol 41 (1) ◽  
pp. 62-62
Author(s):  
Farida Bouremmad Farida Bouremmad ◽  
Abdennour Bouchair Abdennour Bouchair ◽  
Sorour Semsari Parapari Sorour Semsari Parapari ◽  
Shalima Shawuti and Mehmet Ali Gulgun Shalima Shawuti and Mehmet Ali Gulgun

Biosorbents can be an alternative to activated carbon. They are derived from agricultural by-products or aquatic biomass. They are low cost and they may have comparable performances to those of activated carbon. The present study focuses on the characterization of the Corallina Elongata (CE) alga and its adsorption performance for Methylene Blue (MB), this alga is found in abundance at the Mediterranean coast of the city of Jijel in eastern Algeria. The dried alga was characterized using various characterization techniques such as DTA, TG, FTIR, XRD, SEM and EDX, which showed that the material consists essentially of a calcite containing magnesium. Batch adsorption studies were carried out and the effect of experimental parameters Such as pH, initial dye concentration, temperature, adsorbent dose and contact time, on the adsorption of MB was studied. The kinetic experimental data were found to conform to the pseudo-second-order model with good correlation and equilibrium data were best fitted to The Langmuir model, with a maximum adsorption capacity of 34.4 mg/g. The adsorption isotherms at various temperatures allowed the determination of certain thermodynamic parameters (ΔG, ΔH and ΔS). Finally, the adsorption results showed a good affinity between CE and MB with a high adsorption capacity.


2012 ◽  
Vol 724 ◽  
pp. 472-475
Author(s):  
Xuan Liang ◽  
Xue Gang Luo ◽  
Xiao Yan Lin ◽  
Qiang Mei

Low cost industrial and agricultural by-products are promising materials for water pollution treatment such as removal of heavy metals. This work deals with removal of silver ions from solutions using expanded rice husk (ERH), nature diatomite (ND) and nature bentonite (NB). Firstly the influence of pH value of the solution on adsorption capacity for silver ions was studied, and then the effect of initial silver concentration on adsorbents adsorption capacity was investigated. The silver ions removal percentage increases with initial pH and achieves a maximum value of nearly 94% at pH= 5.0 ± 0.5 for ERH. The maximum adsorption capacity is 18.6 mg/g for ERH.


2014 ◽  
Vol 675-677 ◽  
pp. 489-492
Author(s):  
Jing Miao Zhang ◽  
Zhi Wei Zhong ◽  
Da Pan Zhu ◽  
Lin Man Lin ◽  
Qing Ju Wang ◽  
...  

Biosorption of dyeing wastewater is most widely used method so far. The adsorption of methylene blue (MB) with bamboo shoot shell (BSS) as biosorbent was investigated. Orthogonal test was used to optimize the adsorption process, and adsorption capacity and color removal efficiency were used to judge the adsorptivity of BSS. Results showed that maximum adsorption capacity was 225.71 mg·g-1, and color removal efficiency could achieve to 98.96% during the test. To obtain best adsorption capacity, the optimized conditions of temperature, initial concentration of dye, BSS dosage, pH value and adsorption time were 45 °C, 400 mg·L-1, 10 mg/10 mL, 9.6 and 30 min, respectively. As to another target color removal efficiency, the best parameters were 100 mg·L-1, 200 mg/10 mL, 11.5 and 120 min, respectively. The results reveal that the agricultural by-product BSS is an effective biosorbent.


2019 ◽  
Vol 20 (1) ◽  
pp. 202-215 ◽  
Author(s):  
Thi Thuong Nguyen ◽  
Thi Ngoc Thu Nguyen ◽  
Long Giang Bach ◽  
Duy Trinh Nguyen ◽  
Thi Phuong Quynh Bui

The worm-like exfoliated graphite (EG) based adsorbents prepared from low-cost natural graphite flakes via facile synthesis processes have been found to be efficient adsorbents when it comes to removing Pb (II) from aqueous solution. EG was fabricated by chemical intercalation and microwave assisted exfoliation. Furthermore, the magnetic exfoliated graphite (MEG) was developed by incorporating CoFe2O4 particles into the EG layers using the citric acid based sol-gel technique. Adsorption behaviour of Pb (II) on the as-prepared adsorbents was investigated by taking several experimental conditions into consideration such as contact time, initial concentration, adsorbent dosage, and pH value. The results with initial neutral pH indicated that the adsorption isotherms for Pb (II) on the EG and MEG were well consistent with the Langmuir isotherm model revealing the maximum adsorption capacity of 106 mg/g and 68 mg/g for EG and MEG, respectively. The adsorption kinetics of Pb (II) was found to adhere to the pseudo-second-order kinetic model. The chemical interaction between ? electrons on graphite sheets and Pb (II) ions was suggested to play an essential role in the adsorption mechanism. The introduction of magnetic CoFe2O4 to the EG was found to induce the shift of optimal pH value to a more basic condition. The characterization of the adsorbents was performed using relevant analysis techniques such as Scanning electron microscope (SEM), X–ray powder diffraction (XRD), vibrating-sample magnetometer (VSM), and Fourier-transform infrared (FTIR). The results of this work suggest a high possibility for application of the as-prepared modified graphite to remove hazardous substances in practical wastewater treatment systems. ABSTRAK:  Penyerap Pengelupas Grafit (EG) yang berupa seperti cacing dihasilkan dari grafit semulajadi yang murah melalui proses sintesis serpihan, ia juga merupakan penyerap yang bagus dalam mengasingkan Pb (II) daripada larutan akues. EG direka dengan tindak balas interkalasi kimia dan pengelupasan melalui gelombang mikro. Tambahan, pengelupas grafit magnet (MEG) telah dihasilkan dengan memasukkan zarah CoFe2O4 ke dalam lapisan EG menggunakan teknik sol-gel yang berasaskan asid sitrik. Tindak balas penyerapan Pb (II) pada penyerap yang disiapkan ini, dikaji dengan mengambil kira beberapa keadaan eksperimen seperti waktu disentuh, konsentrasi awal, dos penyerap dan nilai pH.  Hasil keputusan pH neutral awal menunjukkan bahawa isoterm penyerapan bagi Pb (II) pada EG dan MEG adalah konsisten dengan model isoterm Langmuir. Ini menunjukkan kapasiti penyerapan maksimum 106 mg/g dan 68 mg/g bagi EG dan MEG, masing-masing. Penyerapan kinetik Pb (II) didapati mematuhi model kinetik pesudo-order-kedua. Interaksi kimia antara elektron ? pada helaian grafit dan ion Pb (II) memainkan peranan penting dalam mekanisme penyerapan. Pengenalan magnet CoFe2O4 kepada EG didapati telah mengubah nilai pH optimum kepada keadaan asal. Pengelasan penyerapan dilakukan menggunakan teknik analisis yang relevan seperti Mikroskop Elektron Pengimbasan (SEM), Difraksi Serbuk sinar-X (XRD), Magnetometer Sampel-Getaran (VSM) dan Inframerah Perubahan-Fourier (FTIR). Hasil kerja ini mencadangkan kemungkinan besar bagi penggunaan grafit ubah suai yang disediakan bagi membuang bahan berbahaya dalam sistem rawatan air sisa praktikal.


2021 ◽  
Author(s):  
shujie Zhang ◽  
Yating Zhang ◽  
Lisong Fu ◽  
Mengke Jing

Abstract Chitosan (CS) fiber is used as a new green material to remove Cu(II) and Cr(VI) in wastewater.Varying factors, including pH value, dosage of CS, reaction time and original Cr (VI) contents and Cu(II) were studied to investigate the Cr (VI) and Cu(II) removal efficiency.The adsorption of two metal ions by chitosan fiber conforms to the second-order kinetic equation, and can be fitted with Langmuir isotherms. The adsorption process is a spontaneous thermal reaction with both physical adsorption and chemical adsorption, and copper ions reach adsorption equilibrium. It takes longer than chromium ions, but the adsorption effect of copper ions is better. The maximum actual adsorption capacity of copper ions is 539.6 mg/g, and the maximum adsorption capacity of chromium ions is 75 mg/g. SEM, FTIR and XRD were used to characterize the physicochemical properties of CS fiber. The result shows that the complex process of the Cr (VI) and Cu(II) removal involves physical and chemical adsorption, CS fiber have exerted significant role in Cr (VI) and Cu(II) removal.


Author(s):  
Doan Van Dat ◽  
Nguyen Hoai Thuong ◽  
Tran Thi Kieu Ngan ◽  
Le Thi Thanh Nhi ◽  
Dao My Uyen ◽  
...  

In this study, magnetic carboxylate-rich carbon material (Fe3O4@CRC) was synthesized via a low-temperature carbonization method and applied as an adsorbent for adsorption of Ni(II) ions and methylene blue (MB) in aqueous solution. The synthesized Fe3O4@CRC was characterized by various techniques (XRD, FTIR, FE-SEM, TEM, EDX, VSM, and BET). The adsorption kinetics, isotherms, thermodynamics, and the effects of key adsorption factors, including the pH value, initial adsorbate concentration, contact time, adsorbent dose and temperature were investigated in detail. The results showed that Fe3O4@CRC exhibited a high adsorption capacity for MB and Ni(II) with the maximum adsorption capacity of 187.26 mg/g and 106.75 mg/g, respectively. The adsorption of MB and Ni(II) on Fe3O4@CRC was a spontaneous and endothermic process, and was best described with the first-order kinetic model, Freundlich (for MB) and Langmuir (for Ni(II)) isotherm models. In addition, Fe3O4@CRC could maintain a high adsorption capacity after many consecutive cycles. Therefore, the Fe3O4@CRC material can be used as a highly efficient adsorbent for the removal of heavy metals and dyes from wastewater due to the advantages of high adsorption performance, easy separation, and good reusability.  


2021 ◽  
Vol 245 ◽  
pp. 03081
Author(s):  
Hongcui Li ◽  
Yurong Li ◽  
Feifei Yan ◽  
Xiangzheng Yin

As a kind of domestic waste, eggshell has developed pore structure and good adsorption capacity. The material was selected as adsorbent to study the adsorption of total nitrogen and total phosphorus in water. After being modified by ferric chloride, its adsorption effect is greatly enhanced. The adsorption of nitrogen and phosphorus in water by eggshell modified by ferric chloride was studied under different conditions. The experimental results show that the adsorption capacity after modification is 15% ~ 40% higher than that before modification. The results of orthogonal experiment show that under the following conditions: pH value was 5.00, dosage was 0.050 g, time was 65 min, the maximum adsorption capacity of total phosphorus was 45.34 mg/g; under the following conditions: pH value was 4.50, dosage was 0.100 g, time was 60 min, the maximum adsorption capacity of total nitrogen was 79.91 mg/g.


2017 ◽  
Vol 36 (1-2) ◽  
pp. 355-371 ◽  
Author(s):  
Fareeda Hayeeye ◽  
Qiming J Yu ◽  
Memoon Sattar ◽  
Watchanida Chinpa ◽  
Orawan Sirichote

Gelatin and activated carbon materials have been combined together to obtain a gelatin/activated carbon composite bead form which is ecofriendly, nontoxic, biocompatible, and inexpensive material. In this paper, gelatin/activated carbon adsorption for Pb2+ ions from aqueous solutions was studied experimentally under various conditions. The experimental conditions such as contact time, solution pH, and gelatin/activated carbon dosage were examined and evaluated by using batch adsorption experiments. The maximum adsorption capacity of gelatin/activated carbon for Pb2+ ions was obtained to be 370.37 mg g−1. This maximum capacity was comparable with that of commercial ion exchange resins and it was much higher than those of natural zeolites. The uptake process for Pb2+ ions was found to be relatively fast with 92.15% of the adsorption completed in about 5 min in batch conditions. The adsorption capacity was also strongly solution pH dependent. Adsorption was observed at pH value as low as 2.0 and maximum adsorption was achieved at a pH of approximately 5. The results indicated that the gelatin/activated carbon was effective to be used as an adsorbent for Pb2+ ions removal in wastewater treatment.


Molecules ◽  
2021 ◽  
Vol 26 (3) ◽  
pp. 661
Author(s):  
Zhiwei Ying ◽  
Xinwei Chen ◽  
He Li ◽  
Xinqi Liu ◽  
Chi Zhang ◽  
...  

Soybean dreg is a by-product of soybean products production, with a large consumption in China. Low utilization value leads to random discarding, which is one of the important sources of urban pollution. In this work, porous biochar was synthesized using a one-pot method and potassium bicarbonate (KHCO3) with low-cost soybean dreg (SD) powder as the carbon precursor to investigating the adsorption of methylene blue (MB). The prepared samples were characterized with scanning electron microscopy (SEM), transmission electron microscopy (TEM), elemental analyzer (EA), Brunauer-Emmett-Teller (BET), X-ray diffractometer (XRD), Raman spectroscopy (Raman), Fourier transform infrared spectrometer (FTIR), and X-ray photoelectron spectroscopy (XPS). The obtained SDB-K-3 showed a high specific surface area of 1620 m2 g−1, a large pore volume of 0.7509 cm3 g−1, and an average pore diameter of 1.859 nm. The results indicated that the maximum adsorption capacity of SDB-K-3 to MB could reach 1273.51 mg g−1 at 318 K. The kinetic data were most consistent with the pseudo-second-order model and the adsorption behavior was more suitable for the Langmuir isotherm equation. This study demonstrated that the porous biochar adsorbent can be prepared from soybean dreg by high value utilization, and it could hold significant potential for dye wastewater treatment in the future.


Sign in / Sign up

Export Citation Format

Share Document