scholarly journals Model Structure Optimization for Fuel Cell Polarization Curves

Computers ◽  
2018 ◽  
Vol 7 (4) ◽  
pp. 60 ◽  
Author(s):  
Markku Ohenoja ◽  
Aki Sorsa ◽  
Kauko Leiviskä

The applications of evolutionary optimizers such as genetic algorithms, differential evolution, and various swarm optimizers to the parameter estimation of the fuel cell polarization curve models have increased. This study takes a novel approach on utilizing evolutionary optimization in fuel cell modeling. Model structure identification is performed with genetic algorithms in order to determine an optimized representation of a polarization curve model with linear model parameters. The optimization is repeated with a different set of input variables and varying model complexity. The resulted model can successfully be generalized for different fuel cells and varying operating conditions, and therefore be readily applicable to fuel cell system simulations.

Author(s):  
Arlette L. Schilter ◽  
Denise A. McKay ◽  
Anna G. Stefanopoulou

We present here a calibrated and experimentally validated lumped parameter model of fuel cell polarization for a hydrogen fed multi-cell, low-pressure, proton exchange membrane (PEM) fuel cell stack. The experimental methodology devised for calibrating the model was completed on a 24 cell, 300 cm2 stack with GORE™ PRIMERA® Series 5620 membranes. The predicted cell voltage is a static function of current density, stack temperature, reactant partial pressures, and membrane water content. The maximum prediction error associated with the sensor resolutions used for the calibration is determined along with a discussion of the model sensitivity to physical variables. The expected standard deviation due to the cell-to-cell voltage variation is also modelled. In contrast to other voltage models that match the observed dynamic voltage behavior by adding unreasonably large double layer capacitor effects or by artificially adding dynamics to the voltage equation, we show that a static model can be used when combined with dynamically resolved variables. The developed static voltage model is then connected with a dynamic fuel cell system model that includes gas filling dynamics, diffusion and water dynamics and we demonstrate the ability of the static voltage equation to predict important transients such as reactant depletion and electrode flooding. It is shown that the model can qualitatively predict the observed stack voltage under various operating conditions including step changes in current, temperature variations, and anode purging.


Author(s):  
Nicola Zuliani ◽  
Rodolfo Taccani ◽  
Robert Radu

High temperature PEM (HTPEM) fuel cell based on polybenzimidazole polymer (PBI) and phosphoric acid, can be operated at temperature between 120°C and 180°C. Reactants humidification is not required and CO content up to 1% in fuel can be tolerated, affecting only marginally performance. This is what makes HTPEM fuel cells very attractive, as low quality reformed hydrogen can be used and water management problems are avoided. This paper aims to present the preliminary experimental results obtained on a HTPEM fuel cell fed with LPG using a compact steam reformer. The analysis focus on the reformer start up transient, on the influence of the steam to carbon ratio on reformate CO content and on the single fuel cell performance at different operating conditions. By analyzing the mass and energy balances of the fuel processor, fuel cell system, and balance-of-plant, a previously developed system simulation model has been used to provide critical assessment on the conversion efficiency for a 1 kWel system. The current study attempts to extend the previously published analyses of integrated HTPEM fuel cell systems.


2006 ◽  
Vol 4 (4) ◽  
pp. 468-473 ◽  
Author(s):  
Alessandra Perna

The purpose of this work is to investigate, by a thermodynamic analysis, the effects of the process variables on the performance of an autothermal reforming (ATR)-based fuel processor, operating on ethanol as fuel, integrated into an overall proton exchange membrane (PEM) fuel cell system. This analysis has been carried out finding the better operating conditions to maximize hydrogen yield and to minimize CO carbon monoxide production. In order to evaluate the overall efficiency of the system, PEM fuel cell operations have been analyzed by an available parametric model.


2021 ◽  
pp. 29-38
Author(s):  
Nabeel Ahsan ◽  
Mahrukh Mehmood ◽  
Asad A. Zaidi

This paper discusses different air management technologies for fuel cell systems. Two different types of compressors are analyzed for Proton-exchange membrane fuel cells (PEMFC). Some important criteria are analyzed thoroughly for the selection of turbo compressor among different types of compressors illustrated with the help of matrix representations. The impacts of various input parameters for Fuel Cell (FC) are also explained thoroughly. Later the numerical modeling of an automobile fuel cell system using a high speed turbo-compressor for air supply is explained. The numerical model incorporates the important input parameters related with air and hydrogen. It also performed energy and mass balances across different components such as pump, fan, heat-exchanger, air compressor and also keeps in consideration the pressure drop across the flow pipes and various mechanical parts. The model is solved to obtain the characteristics of the FC system at different operating conditions. Therefore, it can be concluded that the high speed turbo compressor with a turbo-expander can have significant effects on the overall system power and efficiency.


Author(s):  
Gitanjali Mehta ◽  
S. P. Singh ◽  
Ram Dayal Patidar

Abstract This paper presents the modelling and control of grid interfaced fuel cell distributed generation system with embedded active filter function. The features of active power filter have been incorporated in the control circuit of the current controlled-voltage source inverter interfacing the fuel cell to the grid. Thus the same inverter is utilised to inject power generated from fuel cell source to the grid and to act as shunt active power filter to compensate for load current harmonics, load reactive power demand and load current imbalance. Thus, after compensation, the grid current is sinusoidal and in-phase with grid voltage. Simulation in MATAB and experimentation using DSP is carried out to verify the operation and the control principle. The results are obtained for different operating conditions with varying load demands to prove the effectiveness of the entire system.


Author(s):  
Ivan Arsie ◽  
Alfonso Di Domenico ◽  
Cesare Pianese ◽  
Marco Sorrentino

The paper focuses on the simulation of a hybrid vehicle with proton exchange membrane fuel cell as the main energy conversion system. A modeling structure has been developed to perform accurate analysis for powertrain and control system design. The models simulate the dynamics of the main powertrain elements and fuel cell system to give a sufficient description of the complex interaction between each component under real operating conditions. A control system based on a multi-level scheme has also been introduced and the complexity of control issues for hybrid powertrains have been discussed. Such a study has been performed to analyze the energy flows among the powertrain components. The results highlight that optimizing these systems is not a trivial task and the use of precise models can improve the powertrain development process. Furthermore, the behavior of system state variables and the influence of control actions on fuel cell operation have also been analyzed. Particularly, the effects of the introduction of a rate limiter on the stack power have been investigated, evidencing that a 2 kW/s rate limiter increased the system efficiency by 10% while reducing the dynamic performances of the powertrain in terms of speed error (i.e. 25 %).


Sign in / Sign up

Export Citation Format

Share Document