scholarly journals Genome-Wide Association Study Identifies Loci Associated with Sensitive Skin

Cosmetics ◽  
2020 ◽  
Vol 7 (2) ◽  
pp. 49
Author(s):  
Miranda A. Farage ◽  
Yunxuan Jiang ◽  
Jay P. Tiesman ◽  
Pierre Fontanillas ◽  
Rosemarie Osborne

Individuals suffering from sensitive skin often have other skin conditions and/or diseases, such as fair skin, freckles, rosacea, or atopic dermatitis. Genome-wide association studies (GWAS) have been performed for some of these conditions, but not for sensitive skin. In this study, a total of 23,426 unrelated participants of European ancestry from the 23andMe database were evaluated for self-declared sensitive skin, other skin conditions, and diseases using an online questionnaire format. Responders were separated into two groups: those who declared they had sensitive skin (n = 8971) and those who declared their skin was not sensitive (controls, n = 14,455). A GWAS of sensitive skin individuals identified three genome-wide significance loci (p-value < 5 × 10−8) and seven suggestive loci (p-value < 1 × 10−6). Of the three most significant loci, all have been associated with pigmentation and two have been associated with acne.

2018 ◽  
Author(s):  
Geneviève Galarneau ◽  
Pierre Fontanillas ◽  
Caterina Clementi ◽  
Tina Hu-Seliger ◽  
David-Emlyn Parfitt ◽  
...  

AbstractEndometriosis affects ∼10% of women of reproductive age. It is characterized by the growth of endometrial-like tissue outside the uterus and is frequently associated with severe pain and infertility. We performed the largest endometriosis genome-wide association study (GWAS) to date, with 37,183 cases and 251,258 controls. All women were of European ancestry. We also performed the first GWAS of endometriosis-related infertility, including 2,969 cases and 3,770 controls. Our endometriosis GWAS study replicated, at genome-wide significance, seven loci identified in previous endometriosis GWASs (CELA3A-CDC42, SYNE1, KDR, FSHB-ARL14EP, GREB1, ID4, and CEP112) and identified seven new candidate loci with genome-wide significance (NGF, ATP1B1-F5, CD109, HEY2, OSR2-VPS13B, WT1, and TEX11-SLC7A3). No loci demonstrated genome-wide significance for endometriosis-related infertility, however, the three most strongly associated loci (MCTP1, EPS8L3-CSF1, and LPIN1) were in or near genes associated with female fertility or embryonic lethality in model organisms. These results reveal new candidate genes with potential involvement in the pathophysiology of endometriosis and endometriosis-related infertility.


2017 ◽  
Vol 55 (1) ◽  
pp. 64-71 ◽  
Author(s):  
Dayana A Delgado ◽  
Chenan Zhang ◽  
Lin S Chen ◽  
Jianjun Gao ◽  
Shantanu Roy ◽  
...  

BackgroundLeucocyte telomere length (TL) is a potential biomarker of ageing and risk for age-related disease. Leucocyte TL is heritable and shows substantial differences by race/ethnicity. Recent genome-wide association studies (GWAS) report ~10 loci harbouring SNPs associated with leucocyte TL, but these studies focus primarily on populations of European ancestry.ObjectiveThis study aims to enhance our understanding of genetic determinants of TL across populations.MethodsWe performed a GWAS of TL using data on 5075 Bangladeshi adults. We measured TL using one of two technologies (qPCR or a Luminex-based method) and used standardised variables as TL phenotypes.ResultsOur results replicate previously reported associations in the TERC and TERT regions (P=2.2×10−8 and P=6.4×10−6, respectively). We observed a novel association signal in the RTEL1 gene (intronic SNP rs2297439; P=2.82×10−7) that is independent of previously reported TL-associated SNPs in this region. The minor allele for rs2297439 is common in South Asian populations (≥0.25) but at lower frequencies in other populations (eg, 0.07 in Northern Europeans). Among the eight other previously reported association signals, all were directionally consistent with our study, but only rs8105767 (ZNF208) was nominally significant (P=0.003). SNP-based heritability estimates were as high as 44% when analysing close relatives but much lower when analysing distant relatives only.ConclusionsIn this first GWAS of TL in a South Asian population, we replicate some, but not all, of the loci reported in prior GWAS of individuals of European ancestry, and we identify a novel second association signal at the RTEL1 locus.


2019 ◽  
Author(s):  
Antoine R. Baldassari ◽  
Colleen M. Sitlani ◽  
Heather M. Highland ◽  
Dan E. Arking ◽  
Steve Buyske ◽  
...  

ABSTRACTBackgroundPublished genome-wide association studies (GWAS) are mainly European-centric, examine a narrow view of phenotypic variation, and infrequently interrogate genetic effects shared across traits. We therefore examined the extent to which a multi-ethnic, combined trait GWAS of phenotypes that map to well-defined biology can enable detection and characterization of complex trait loci.MethodsWith 1000 Genomes Phase 3 imputed data in 34,668 participants (15% African American; 3% Chinese American; 51% European American; 30% Hispanic/Latino), we performed covariate-adjusted univariate GWAS of six contiguous electrocardiogram (ECG) traits that decomposed an average heartbeat and two commonly reported composite ECG traits that summed contiguous traits. Combined phenotype testing was performed using the adaptive sum of powered scores test (aSPU).ResultsWe identified six novel and 87 known ECG trait loci (aSPU p-value < 5E-9). Lead SNP rs3211938 at novel locus CD36 was common in African Americans (minor allele frequency=10%) and near-monomorphic in European Americans, with effect sizes for the composite trait, QT interval, among the largest reported. Only one novel locus was detected for the composite traits, due to opposite directions of effects across contiguous traits that summed to near-zero. Combined phenotype testing did not detect novel loci unapparent by univariate testing. However, this approach aided locus characterization, particularly when loci harbored multiple independent signals that differed by trait.ConclusionsDespite including one-third as few participants as the largest published GWAS of ECG traits, our study identifies multiple novel ECG genetic loci, emphasizing the importance of ancestral diversity and phenotype measurement in this era of ever-growing GWAS.AUTHOR SUMMARYWe leveraged a multiethnic cohort with precise measures of cardioelectric function to identify novel genetic loci affecting this complex, multifaceted phenotype. The success of our approach stresses the importance of phenotypic precision and participant diversity for future locus discovery and characterization efforts, and cautions against compromises made in genome-wide association studies to pursue ever-growing sample sizes.


2020 ◽  
Author(s):  
Segun Fatumo ◽  
Tinashe Chikowore ◽  
Robert Kalyesubula ◽  
Rebecca N Nsubuga ◽  
Gershim Asiki ◽  
...  

AbstractGenome-wide association studies (GWAS) for kidney function have uncovered hundreds of risk loci, primarily in populations of European ancestry. We conducted the first GWAS of estimated glomerular filtration rate (eGFR) in Africa in 3288 Ugandans and replicated the findings in 8224 African Americans. We identified two loci associated with eGFR at genome-wide significance (p<5×10−8). The most significantly associated variant (rs2433603, p=2.4×10−9) in GATM was distinct from previously reported signals. A second association signal mapping near HBB (rs141845179, p=3.0×10−8) was not significant after conditioning on a previously reported SNP (rs334) for eGFR. However, fine-mapping analyses highlighted rs141845179 to be the most likely causal variant at the HBB locus (posterior probability of 0.61). A trans-ethnic GRS of eGFR constructed from previously reported lead SNPs was not predictive into the Ugandan population, indicating that additional large-scale efforts in Africa are necessary to gain further insight into the genetic architecture of kidney disease.


2021 ◽  
Author(s):  
Segun Fatumo ◽  
Tinashe Chikowore ◽  
Robert Kalyesubula ◽  
Rebecca N Nsubuga ◽  
Gershim Asiki ◽  
...  

Abstract Genome-wide association studies (GWAS) of kidney function have uncovered hundreds of loci, primarily in populations of European ancestry. We have undertaken the first continental African GWAS of estimated glomerular filtration rate (eGFR), a measure of kidney function used to define chronic kidney disease (CKD). We conducted GWAS of eGFR in 3288 East Africans from the Uganda General Population Cohort (GPC) and replicated in 8224 African Americans from the Women’s Health Initiative. Loci attaining genome-wide significant evidence for association (P &lt; 5 × 10−8) were followed up with Bayesian fine-mapping to localize potential causal variants. The predictive power of a genetic risk score (GRS) constructed from previously reported trans-ancestry eGFR lead single nucleotide polymorphism (SNPs) was evaluated in the Uganda GPC. We identified and validated two eGFR loci. At the glycine amidinotransferase (GATM) locus, the association signal (lead SNP rs2433603, P = 1.0 × 10−8) in the Uganda GPC GWAS was distinct from previously reported signals at this locus. At the haemoglobin beta (HBB) locus, the association signal (lead SNP rs141845179, P = 3.0 × 10−8) has been previously reported. The lead SNP at the HBB locus accounted for 88% of the posterior probability of causality after fine-mapping, but did not colocalise with kidney expression quantitative trait loci. The trans-ancestry GRS of eGFR was not significantly predictive into the Ugandan population. In the first GWAS of eGFR in continental Africa, we validated two previously reported loci at GATM and HBB. At the GATM locus, the association signal was distinct from that previously reported. These results demonstrate the value of performing GWAS in continental Africans, providing a rich genomic resource to larger consortia for further discovery and fine-mapping. The study emphasizes that additional large-scale efforts in Africa are warranted to gain further insight into the genetic architecture of CKD.


2018 ◽  
Author(s):  
Caroline M. Nievergelt ◽  
Adam X. Maihofer ◽  
Torsten Klengel ◽  
Elizabeth G. Atkinson ◽  
Chia-Yen Chen ◽  
...  

AbstractPost-traumatic stress disorder (PTSD) is a common and debilitating disorder. The risk of PTSD following trauma is heritable, but robust common variants have yet to be identified by genome-wide association studies (GWAS). We have collected a multi-ethnic cohort including over 30,000 PTSD cases and 170,000 controls. We first demonstrate significant genetic correlations across 60 PTSD cohorts to evaluate the comparability of these phenotypically heterogeneous studies. In this largest GWAS meta-analysis of PTSD to date we identify a total of 6 genome-wide significant loci, 4 in European and 2 in African-ancestry analyses. Follow-up analyses incorporated local ancestry and sex-specific effects, and functional studies. Along with other novel genes, a non-coding RNA (ncRNA) and a Parkinson’s Disease gene,PARK2, were associated with PTSD. Consistent with previous reports, SNP-based heritability estimates for PTSD range between 10-20%. Despite a significant shared liability between PTSD and major depressive disorder, we show evidence that some of our loci may be specific to PTSD. These results demonstrate the role of genetic variation contributing to the biology of differential risk for PTSD and the necessity of expanding GWAS beyond European ancestry.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Caroline M. Nievergelt ◽  
Adam X. Maihofer ◽  
Torsten Klengel ◽  
Elizabeth G. Atkinson ◽  
Chia-Yen Chen ◽  
...  

Abstract The risk of posttraumatic stress disorder (PTSD) following trauma is heritable, but robust common variants have yet to be identified. In a multi-ethnic cohort including over 30,000 PTSD cases and 170,000 controls we conduct a genome-wide association study of PTSD. We demonstrate SNP-based heritability estimates of 5–20%, varying by sex. Three genome-wide significant loci are identified, 2 in European and 1 in African-ancestry analyses. Analyses stratified by sex implicate 3 additional loci in men. Along with other novel genes and non-coding RNAs, a Parkinson’s disease gene involved in dopamine regulation, PARK2, is associated with PTSD. Finally, we demonstrate that polygenic risk for PTSD is significantly predictive of re-experiencing symptoms in the Million Veteran Program dataset, although specific loci did not replicate. These results demonstrate the role of genetic variation in the biology of risk for PTSD and highlight the necessity of conducting sex-stratified analyses and expanding GWAS beyond European ancestry populations.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Daniel L. McCartney ◽  
Josine L. Min ◽  
Rebecca C. Richmond ◽  
Ake T. Lu ◽  
Maria K. Sobczyk ◽  
...  

Abstract Background Biological aging estimators derived from DNA methylation data are heritable and correlate with morbidity and mortality. Consequently, identification of genetic and environmental contributors to the variation in these measures in populations has become a major goal in the field. Results Leveraging DNA methylation and SNP data from more than 40,000 individuals, we identify 137 genome-wide significant loci, of which 113 are novel, from genome-wide association study (GWAS) meta-analyses of four epigenetic clocks and epigenetic surrogate markers for granulocyte proportions and plasminogen activator inhibitor 1 levels, respectively. We find evidence for shared genetic loci associated with the Horvath clock and expression of transcripts encoding genes linked to lipid metabolism and immune function. Notably, these loci are independent of those reported to regulate DNA methylation levels at constituent clock CpGs. A polygenic score for GrimAge acceleration showed strong associations with adiposity-related traits, educational attainment, parental longevity, and C-reactive protein levels. Conclusion This study illuminates the genetic architecture underlying epigenetic aging and its shared genetic contributions with lifestyle factors and longevity.


2018 ◽  
Author(s):  
Natalie Terzikhan ◽  
Fangui Sun ◽  
Fien M. Verhamme ◽  
Hieab H.H. Adams ◽  
Daan Loth ◽  
...  

AbstractBackgroundAlthough several genome wide association studies (GWAS) have investigated the genetics of pulmonary ventilatory function, little is known about the genetic factors that influence gas exchange.AimTo investigate the heritability of, and genetic variants associated with the diffusing capacity of the lung.MethodsGWAS was performed on diffusing capacity, measured by carbon monoxide uptake (DLCO) and per alveolar volume (DLCO/VA) using the single-breath technique, in 8,372 individuals from two population-based cohort studies, the Rotterdam Study and the Framingham Heart Study. Heritability was estimated in related (n=6,246) and unrelated (n=3,286) individuals.ResultsHeritability of DLCO and DLCO/VA ranged between 23% and 28% in unrelated individuals and between 45% and 49% in related individuals. Meta-analysis identified a genetic variant in GPR126 that is significantly associated with DLCO/VA. Gene expression analysis of GPR126 in human lung tissue revealed a decreased expression in patients with COPD and subjects with decreased DLCO/VA.ConclusionDLCO and DLCO/VA are heritable traits, with a considerable proportion of variance explained by genetics. A functional variant in GPR126 gene region was significantly associated with DLCO/VA. Pulmonary GPR126 expression was decreased in patients with COPD.


Sign in / Sign up

Export Citation Format

Share Document