scholarly journals Heritability and genome-wide association study of diffusing capacity of the lung

2018 ◽  
Author(s):  
Natalie Terzikhan ◽  
Fangui Sun ◽  
Fien M. Verhamme ◽  
Hieab H.H. Adams ◽  
Daan Loth ◽  
...  

AbstractBackgroundAlthough several genome wide association studies (GWAS) have investigated the genetics of pulmonary ventilatory function, little is known about the genetic factors that influence gas exchange.AimTo investigate the heritability of, and genetic variants associated with the diffusing capacity of the lung.MethodsGWAS was performed on diffusing capacity, measured by carbon monoxide uptake (DLCO) and per alveolar volume (DLCO/VA) using the single-breath technique, in 8,372 individuals from two population-based cohort studies, the Rotterdam Study and the Framingham Heart Study. Heritability was estimated in related (n=6,246) and unrelated (n=3,286) individuals.ResultsHeritability of DLCO and DLCO/VA ranged between 23% and 28% in unrelated individuals and between 45% and 49% in related individuals. Meta-analysis identified a genetic variant in GPR126 that is significantly associated with DLCO/VA. Gene expression analysis of GPR126 in human lung tissue revealed a decreased expression in patients with COPD and subjects with decreased DLCO/VA.ConclusionDLCO and DLCO/VA are heritable traits, with a considerable proportion of variance explained by genetics. A functional variant in GPR126 gene region was significantly associated with DLCO/VA. Pulmonary GPR126 expression was decreased in patients with COPD.

2018 ◽  
Vol 52 (3) ◽  
pp. 1800647 ◽  
Author(s):  
Natalie Terzikhan ◽  
Fangui Sun ◽  
Fien M. Verhamme ◽  
Hieab H.H. Adams ◽  
Daan Loth ◽  
...  

Although several genome-wide association studies (GWAS) have investigated the genetics of pulmonary ventilatory function, little is known about the genetic factors that influence gas exchange. The aim of the study was to investigate the heritability of, and genetic variants associated with the diffusing capacity of the lung.GWAS was performed on diffusing capacity of the lung measured by carbon monoxide uptake (DLCO) and per alveolar volume (VA) using the single-breath technique, in 8372 individuals from two population-based cohort studies, the Rotterdam Study and the Framingham Heart Study. Heritability was estimated in related (n=6246) and unrelated (n=3286) individuals.Heritability of DLCO and DLCO/VA ranged between 23% and 28% in unrelated individuals and between 45% and 49% in related individuals. Meta-analysis identified a genetic variant in ADGRG6 that is significantly associated with DLCO/VA. Gene expression analysis of ADGRG6 in human lung tissue revealed a decreased expression in patients with chronic obstructive pulmonary disease (COPD) and subjects with decreased DLCO/VA.DLCO and DLCO/VA are heritable traits, with a considerable proportion of variance explained by genetics. A functional variant in ADGRG6 gene region was significantly associated with DLCO/VA. Pulmonary ADGRG6 expression was decreased in patients with COPD.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Vincent L. Chen ◽  
Xiaomeng Du ◽  
Yanhua Chen ◽  
Annapurna Kuppa ◽  
Samuel K. Handelman ◽  
...  

AbstractSerum liver enzyme concentrations are the most frequently-used laboratory markers of liver disease, a major cause of mortality. We conduct a meta-analysis of genome-wide association studies of liver enzymes from UK BioBank and BioBank Japan. We identified 160 previously-unreported independent alanine aminotransferase, 190 aspartate aminotransferase, and 199 alkaline phosphatase genome-wide significant associations, with some affecting multiple different enzymes. Associated variants implicate genes that demonstrate diverse liver cell type expression and promote a range of metabolic and liver diseases. These findings provide insight into the pathophysiology of liver and other metabolic diseases that are associated with serum liver enzyme concentrations.


2016 ◽  
Author(s):  
Liping Hou ◽  
Sarah E. Bergen ◽  
Nirmala Akula ◽  
Jie Song ◽  
Christina M. Hultman ◽  
...  

ABSTRACTBipolar disorder (BD) is a genetically complex mental illness characterized by severe oscillations of mood and behavior. Genome-wide association studies (GWAS) have identified several risk loci that together account for a small portion of the heritability. To identify additional risk loci, we performed a two-stage meta-analysis of >9 million genetic variants in 9,784 bipolar disorder patients and 30,471 controls, the largest GWAS of BD to date. In this study, to increase power we used ~2,000 lithium-treated cases with a long-term diagnosis of BD from the Consortium on Lithium Genetics, excess controls, and analytic methods optimized for markers on the X-chromosome. In addition to four known loci, results revealed genome-wide significant associations at two novel loci: an intergenic region on 9p21.3 (rs12553324, p = 5.87×10−9; odds ratio = 1.12) and markers within ERBB2 (rs2517959, p = 4.53×10−9; odds ratio = 1.13). No significant X-chromosome associations were detected and X-linked markers explained very little BD heritability. The results add to a growing list of common autosomal variants involved in BD and illustrate the power of comparing well-characterized cases to an excess of controls in GWAS.


2019 ◽  
Author(s):  
Sonia Shah ◽  
Albert Henry ◽  
Carolina Roselli ◽  
Honghuang Lin ◽  
Garðar Sveinbjörnsson ◽  
...  

AbstractHeart failure (HF) is a leading cause of morbidity and mortality worldwide1. A small proportion of HF cases are attributable to monogenic cardiomyopathies and existing genome-wide association studies (GWAS) have yielded only limited insights, leaving the observed heritability of HF largely unexplained2–4. We report the largest GWAS meta-analysis of HF to-date, comprising 47,309 cases and 930,014 controls. We identify 12 independent variant associations with HF at 11 genomic loci, all of which demonstrate one or more associations with coronary artery disease (CAD), atrial fibrillation, or reduced left ventricular function suggesting shared genetic aetiology. Expression quantitative trait analysis of non-CAD-associated loci implicate genes involved in cardiac development (MYOZ1, SYNPO2L), protein homeostasis (BAG3), and cellular senescence (CDKN1A). Using Mendelian randomisation analysis we provide new evidence supporting previously equivocal causal roles for several HF risk factors identified in observational studies, and demonstrate CAD-independent effects for atrial fibrillation, body mass index, hypertension and triglycerides. These findings extend our knowledge of the genes and pathways underlying HF and may inform the development of new therapeutic approaches.


Blood ◽  
2012 ◽  
Vol 120 (4) ◽  
pp. 843-846 ◽  
Author(s):  
Susan L. Slager ◽  
Christine F. Skibola ◽  
Maria Chiara Di Bernardo ◽  
Lucia Conde ◽  
Peter Broderick ◽  
...  

Abstract We performed a meta-analysis of 3 genome-wide association studies to identify additional common variants influencing chronic lymphocytic leukemia (CLL) risk. The discovery phase was composed of genome-wide association study data from 1121 cases and 3745 controls. Replication analysis was performed in 861 cases and 2033 controls. We identified a novel CLL risk locus at 6p21.33 (rs210142; intronic to the BAK1 gene, BCL2 antagonist killer 1; P = 9.47 × 10−16). A strong relationship between risk genotype and reduced BAK1 expression was shown in lymphoblastoid cell lines. This finding provides additional support for polygenic inheritance to CLL and provides further insight into the biologic basis of disease development.


2020 ◽  
Vol 3 (1) ◽  
Author(s):  
Maria Didriksen ◽  
Muhammad Sulaman Nawaz ◽  
Joseph Dowsett ◽  
Steven Bell ◽  
Christian Erikstrup ◽  
...  

AbstractRestless legs syndrome (RLS) is a common neurological sensorimotor disorder often described as an unpleasant sensation associated with an urge to move the legs. Here we report findings from a meta-analysis of genome-wide association studies of RLS including 480,982 Caucasians (cases = 10,257) and a follow up sample of 24,977 (cases = 6,651). We confirm 19 of the 20 previously reported RLS sequence variants at 19 loci and report three novel RLS associations; rs112716420-G (OR = 1.25, P = 1.5 × 10−18), rs10068599-T (OR = 1.09, P = 6.9 × 10−10) and rs10769894-A (OR = 0.90, P = 9.4 × 10−14). At four of the 22 RLS loci, cis-eQTL analysis indicates a causal impact on gene expression. Through polygenic risk score for RLS we extended prior epidemiological findings implicating obesity, smoking and high alcohol intake as risk factors for RLS. To improve our understanding, with the purpose of seeking better treatments, more genetics studies yielding deeper insights into the disease biology are needed.


2017 ◽  
Author(s):  
Quinn T. Ostrom ◽  
Ben Kinnersley ◽  
Margaret R. Wrensch ◽  
Jeanette E. Eckel-Passow ◽  
Georgina Armstrong ◽  
...  

AbstractIncidence of glioma is approximately 50% higher in males. Previous analyses have examined exposures related to sex hormones in women as potential protective factors for these tumors, with inconsistent results. Previous glioma genome-wide association studies (GWAS) have not stratified by sex. Potential sex-specific genetic effects were assessed in autosomal SNPs and sex chromosome variants for all glioma, GBM and non-GBM patients using data from four previous glioma GWAS. Datasets were analyzed using sex-stratified logistic regression models and combined using meta-analysis. There were 4,831 male cases, 5,216 male controls, 3,206 female cases and 5,470 female controls. A significant association was detected at rs11979158 (7p11.2) in males only. Association at rs55705857 (8q24.21) was stronger in females than in males. A large region on 3p21.31 was identified with significant association in females only. The identified differences in effect of risk variants do not fully explain the observed incidence difference in glioma by sex.


Blood ◽  
2018 ◽  
Vol 132 (19) ◽  
pp. 2040-2052 ◽  
Author(s):  
Amit Sud ◽  
Hauke Thomsen ◽  
Giulia Orlando ◽  
Asta Försti ◽  
Philip J. Law ◽  
...  

Abstract To further our understanding of inherited susceptibility to Hodgkin lymphoma (HL), we performed a meta-analysis of 7 genome-wide association studies totaling 5325 HL cases and 22 423 control patients. We identify 5 new HL risk loci at 6p21.31 (rs649775; P = 2.11 × 10−10), 6q23.3 (rs1002658; P = 2.97 × 10−8), 11q23.1 (rs7111520; P = 1.44 × 10−11), 16p11.2 (rs6565176; P = 4.00 × 10−8), and 20q13.12 (rs2425752; P = 2.01 × 10−8). Integration of gene expression, histone modification, and in situ promoter capture Hi-C data at the 5 new and 13 known risk loci implicates dysfunction of the germinal center reaction, disrupted T-cell differentiation and function, and constitutive NF-κB activation as mechanisms of predisposition. These data provide further insights into the genetic susceptibility and biology of HL.


2018 ◽  
Author(s):  
Caroline M. Nievergelt ◽  
Adam X. Maihofer ◽  
Torsten Klengel ◽  
Elizabeth G. Atkinson ◽  
Chia-Yen Chen ◽  
...  

AbstractPost-traumatic stress disorder (PTSD) is a common and debilitating disorder. The risk of PTSD following trauma is heritable, but robust common variants have yet to be identified by genome-wide association studies (GWAS). We have collected a multi-ethnic cohort including over 30,000 PTSD cases and 170,000 controls. We first demonstrate significant genetic correlations across 60 PTSD cohorts to evaluate the comparability of these phenotypically heterogeneous studies. In this largest GWAS meta-analysis of PTSD to date we identify a total of 6 genome-wide significant loci, 4 in European and 2 in African-ancestry analyses. Follow-up analyses incorporated local ancestry and sex-specific effects, and functional studies. Along with other novel genes, a non-coding RNA (ncRNA) and a Parkinson’s Disease gene,PARK2, were associated with PTSD. Consistent with previous reports, SNP-based heritability estimates for PTSD range between 10-20%. Despite a significant shared liability between PTSD and major depressive disorder, we show evidence that some of our loci may be specific to PTSD. These results demonstrate the role of genetic variation contributing to the biology of differential risk for PTSD and the necessity of expanding GWAS beyond European ancestry.


Sign in / Sign up

Export Citation Format

Share Document