scholarly journals Security and Performance of Single Sign-on Based on One-Time Pad Algorithm

Cryptography ◽  
2020 ◽  
Vol 4 (2) ◽  
pp. 16
Author(s):  
Maki Kihara ◽  
Satoshi Iriyama

Single sign-on (SSO) techniques allow access control for multiple systems with a single login. The aim of our study is to construct an authentication algorithm that provides the authentication information of a user to a requester without requiring any specific token, thereby achieving domain-free access control. In this study, we propose an authentication algorithm for SSO based on a verifiable encryption (VE)-based authentication algorithm and implementation. VE is a kind of cryptosystem that allows calculation on cyphertexts, generating an encrypted result, which matches the distance between two plaintexts when decrypting. In our approach, we first construct the mathematical SSO algorithm based on the VE-based algorithm, and then implement the algorithm by applying the one-time pad to the algorithm and using sample data. We also consider robustness against theoretical attacks such as man-in-the-middle attack. In addition to that, our algorithm is robust against the well-known classical and theoretical attacks, the man-in-the-middle attack against the proposed algorithm is also impracticable. Furthermore, with security analysis using Proverif, the algorithm has been shown to be secure. The execution speed is less than 1 ms even with a text length of 8192 bits. Based on our results, it is evident that the computational burden of trusted third parties, such as a certificate authority, can be alleviated because the public key agreement is not required in our algorithm. Moreover, since only the authentication information is disclosed to the service provider, big tech such as GAFA cannot obtain personal information of the user without consent. As for the originality of our algorithm, any personal information, such as biometric information and non-contact magnetic IC cards in addition to the pair of ID and password, which is used for common SSO algorithms, is available.

Author(s):  
Cristina Raluca Gh. Popescu

With the main objective of determining the essential factors that incorporate or enhance innovative capital, the present study, based, on the one hand, on the evaluation of the literature, allowed identifying ten potential factors and centered, on the other hand, on the analysis represented by the linear regression facilitated displaying the interdependencies between these factors and performance, thus determining the overall meaning and intensity of their contribution. In order to identify general and essential trends, to eliminate the cyclical influences of innovative capital, the present study was conducted on the basis of public and free access data contained by Eurostat, the transparency and accessibility of information being very important criteria in defining a simple and successful model, applicable for assessing the contribution of intellectual capital, in general, and its most dynamic component of innovative capital to increasing the performance of organizations.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Xieyang Shen ◽  
Chuanhe Huang ◽  
Xiajiong Shen ◽  
Jiaoli Shi ◽  
Danxin Wang

With the ever-increasing demands on decentralization and transparency of cloud storage, CP-ABE (Ciphertext Policy-Attribute-Based Encryption) has become a promising technology for blockchain-enabled data sharing methods due to its flexibility. However, real-world blockchain applications usually have some special requirements like time restrictions or power limitations. Thus, decryption outsourcing is widely used in data sharing scenarios and also causes concerns about data security. In this paper, we proposed a secure access control scheme based on CP-ABE, which could share contents during a particular time slot in blockchain-enabled data sharing systems. Specifically, we bind the time period with both ciphertexts and the keys to archive the goal of only users who have the required attributes in a particular time slot can decrypt the content. Besides, we use time slots as a token to protect the data and access control scheme when users want to outsource the decryption phase. The security analysis shows that our scheme can provide collusion resistance ability under a time restriction, and performance evaluations indicate that our scheme uses less time in decryption compared to other schemes while ensuring security.


2021 ◽  
Vol 2021 ◽  
pp. 1-14 ◽  
Author(s):  
Tsu-Yang Wu ◽  
Lei Yang ◽  
Zhiyuan Lee ◽  
Chien-Ming Chen ◽  
Jeng-Shyang Pan ◽  
...  

A multiserver environment can improve the efficiency of mobile network services more effectively than a single server in managing the increase in users. Because of the large number of users, the security of users’ personal information and communication information is more important in a multiserver environment. Recently, Wang et al. proposed a multiserver authentication scheme based on biometrics and proved the security of their scheme. However, we first demonstrate that their scheme is insecure against a known session-specific temporary information attacks, user impersonation attacks, and server impersonation attacks. To solve the security weakness, we propose an improved scheme based on Wang et al.’s scheme. The security of our improved scheme is also validated based on the formal security analysis, Burrows–Abadi–Needham (BAN) logic, ProVerif, and informal security analysis. Security and performance comparisons prove the security and efficiency of our scheme.


2018 ◽  
Vol 13 (2) ◽  
pp. 187-211
Author(s):  
Patricia E. Chu

The Paris avant-garde milieu from which both Cirque Calder/Calder's Circus and Painlevé’s early films emerged was a cultural intersection of art and the twentieth-century life sciences. In turning to the style of current scientific journals, the Paris surrealists can be understood as engaging the (life) sciences not simply as a provider of normative categories of materiality to be dismissed, but as a companion in apprehending the “reality” of a world beneath the surface just as real as the one visible to the naked eye. I will focus in this essay on two modernist practices in new media in the context of the history of the life sciences: Jean Painlevé’s (1902–1989) science films and Alexander Calder's (1898–1976) work in three-dimensional moving art and performance—the Circus. In analyzing Painlevé’s work, I discuss it as exemplary of a moment when life sciences and avant-garde technical methods and philosophies created each other rather than being classified as separate categories of epistemological work. In moving from Painlevé’s films to Alexander Calder's Circus, Painlevé’s cinematography remains at the forefront; I use his film of one of Calder's performances of the Circus, a collaboration the men had taken two decades to complete. Painlevé’s depiction allows us to see the elements of Calder's work that mark it as akin to Painlevé’s own interest in a modern experimental organicism as central to the so-called machine-age. Calder's work can be understood as similarly developing an avant-garde practice along the line between the bestiary of the natural historian and the bestiary of the modern life scientist.


Sensors ◽  
2021 ◽  
Vol 21 (11) ◽  
pp. 3929
Author(s):  
Han-Yun Chen ◽  
Ching-Hung Lee

This study discusses convolutional neural networks (CNNs) for vibration signals analysis, including applications in machining surface roughness estimation, bearing faults diagnosis, and tool wear detection. The one-dimensional CNNs (1DCNN) and two-dimensional CNNs (2DCNN) are applied for regression and classification applications using different types of inputs, e.g., raw signals, and time-frequency spectra images by short time Fourier transform. In the application of regression and the estimation of machining surface roughness, the 1DCNN is utilized and the corresponding CNN structure (hyper parameters) optimization is proposed by using uniform experimental design (UED), neural network, multiple regression, and particle swarm optimization. It demonstrates the effectiveness of the proposed approach to obtain a structure with better performance. In applications of classification, bearing faults and tool wear classification are carried out by vibration signals analysis and CNN. Finally, the experimental results are shown to demonstrate the effectiveness and performance of our approach.


Electronics ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 1117
Author(s):  
Bin Li ◽  
Zhikang Jiang ◽  
Jie Chen

Computing the sparse fast Fourier transform (sFFT) has emerged as a critical topic for a long time because of its high efficiency and wide practicability. More than twenty different sFFT algorithms compute discrete Fourier transform (DFT) by their unique methods so far. In order to use them properly, the urgent topic of great concern is how to analyze and evaluate the performance of these algorithms in theory and practice. This paper mainly discusses the technology and performance of sFFT algorithms using the aliasing filter. In the first part, the paper introduces the three frameworks: the one-shot framework based on the compressed sensing (CS) solver, the peeling framework based on the bipartite graph and the iterative framework based on the binary tree search. Then, we obtain the conclusion of the performance of six corresponding algorithms: the sFFT-DT1.0, sFFT-DT2.0, sFFT-DT3.0, FFAST, R-FFAST, and DSFFT algorithms in theory. In the second part, we make two categories of experiments for computing the signals of different SNRs, different lengths, and different sparsities by a standard testing platform and record the run time, the percentage of the signal sampled, and the L0, L1, and L2 errors both in the exactly sparse case and the general sparse case. The results of these performance analyses are our guide to optimize these algorithms and use them selectively.


2021 ◽  
Vol 17 (2) ◽  
pp. 186-203
Author(s):  
Nathan Genicot

AbstractThe COVID-19 pandemic has given rise to the massive development and use of health indicators. Drawing on the history of international public health and of the management of infectious disease, this paper attempts to show that the normative power acquired by metrics during the pandemic can be understood in light of two rationales: epidemiological surveillance and performance assessment. On the one hand, indicators are established to evaluate and rank countries’ responses to the outbreak; on the other, the evolution of indicators has a direct influence on the content of public health policies. Although quantitative data are an absolute necessity for coping with such disasters, it is critical to bear in mind the inherent partiality and precarity of the information provided by health indicators. Given the growing importance of normative quantitative devices during the pandemic, and assuming that their influence is unlikely to decrease in the future, they call for close scrutiny.


Sign in / Sign up

Export Citation Format

Share Document