scholarly journals Characterization of Silver Nanoparticles Obtained by a Green Route and Their Evaluation in the Bacterium of Pseudomonas aeruginosa

Crystals ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 395 ◽  
Author(s):  
Juan Carlos Martínez Espinosa ◽  
Raúl Carrera Cerritos ◽  
Maria Antonieta Ramírez Morales ◽  
Karla Paola Sánchez Guerrero ◽  
Rocio Alejandra Silva Contreras ◽  
...  

Metal nanoparticles are widely used in different areas such as biotechnology and biomedicine, for example in drug delivery, imaging and control of bacterial growth. The antimicrobial effect of silver has been identified as an alternative approach to the increasing bacterial resistance to antibiotics. Silver nanoparticles were synthesized by the green route using the Geranium extract as a reducing agent. The characterization was carried out by the techniques of UV-Vis spectrophotometry, transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), X-ray emitted photoelectron spectroscopy (XPS) and X-ray diffraction. Nanoparticle diameters between 15 and 50 nm were obtained and the interplanar spaces calculated from the electron diffraction pattern corresponding to a mixture of silver with 4H and FCC structures. To determine the minimum inhibitory concentration of silver nanoparticles (AgNPs) on the Pseudomonas aeruginosa bacteria (ATCC-27853), different concentrations of colloidal solution 0.36, 0.18, 0.09 and 0.05 μg/mL were evaluated as a function of the incubation time, measuring the inhibition halo and colony forming unit (CFU) during 0, 2 and 4 h of incubation. The minimum inhibitory AgNPs concentration (MIC) is 0.36 μg/mL at 0 h while the concentration of 0.18 μg/mL presents a total inhibition of the bacterium after 2 h. For the rest of the dilutions, gradual inhibitions as a function of time were observed. We evaluate the antibacterial effect of silver nanoparticles obtained by a green methodology in Pseudomonas aeruginosa bacteria. Finally, the colloidal nanoparticle solution can be an antibacterial alternative for different biomedical approaches.

NANO ◽  
2013 ◽  
Vol 08 (06) ◽  
pp. 1350062 ◽  
Author(s):  
SHIYONG BAO ◽  
HAN ZHU ◽  
PAN WANG ◽  
MEILING ZOU ◽  
MINGLIANG DU ◽  
...  

A facile and green route was introduced to synthesize Pt nanoparticles (PtNPs) immobilized on Cu 2 O octahedrons to form Cu 2 O – Pt hierarchical heterostructure. Transmission electron microscopy (TEM), field emission scanning electron microscopy (FE-SEM), high resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD) were employed to study their morphology, chemical and crystallographic properties of the Cu 2 O – Pt hierarchical heterostructure. These novel Cu 2 O – Pt hierarchical heterostructures show fascinating degradations of methylene blue (MB), due to the suppressed electron/hole recombination phenomena and the efficient ability to capture the light.


Nanomaterials ◽  
2022 ◽  
Vol 12 (2) ◽  
pp. 193
Author(s):  
Kamrun Nahar Fatema ◽  
Chang-Sung Lim ◽  
Yin Liu ◽  
Kwang-Youn Cho ◽  
Chong-Hun Jung ◽  
...  

We described the novel nanocomposite of silver doped ZrO2 combined graphene-based mesoporous silica (ZrO2-Ag-G-SiO2,) in bases of low-cost and self-assembly strategy. Synthesized ZrO2-Ag-G-SiO2 were characterized through X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray spectrometry (EDX), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), Raman spectroscopy, Nitrogen adsorption-desorption isotherms, X-ray photoelectron spectroscopy (XPS), and Diffuse Reflectance Spectroscopy (DRS). The ZrO2-Ag-G-SiO2 as an enzyme-free glucose sensor active material toward coordinate electro-oxidation of glucose was considered through cyclic voltammetry in significant electrolytes, such as phosphate buffer (PBS) at pH 7.4 and commercial urine. Utilizing ZrO2-Ag-G-SiO2, glucose detecting may well be finished with effective electrocatalytic performance toward organically important concentrations with the current reaction of 9.0 × 10−3 mAcm−2 and 0.05 mmol/L at the lowest potential of +0.2 V, thus fulfilling the elemental prerequisites for glucose detecting within the urine. Likewise, the ZrO2-Ag-G-SiO2 electrode can be worked for glucose detecting within the interferometer substances (e.g., ascorbic corrosive, lactose, fructose, and starch) in urine at proper pH conditions. Our results highlight the potential usages for qualitative and quantitative electrochemical investigation of glucose through the ZrO2-Ag-G-SiO2 sensor for glucose detecting within the urine concentration.


2019 ◽  
Vol 10 ◽  
pp. 62-70 ◽  
Author(s):  
Yong Li ◽  
Peng Yang ◽  
Bin Wang ◽  
Zhongqing Liu

Bimetallic phosphides have been attracting increasing attention due to their synergistic effect for improving the hydrogen evolution reaction as compared to monometallic phosphides. In this work, NiCoP modified hybrid electrodes were fabricated by a one-step electrodeposition process with TiO2 nanotube arrays (TNAs) as a carrier. X-ray diffraction, transmission electron microscopy, UV–vis diffuse reflection spectroscopy, X-ray photoelectron spectroscopy and scanning transmission electron microscopy/energy-dispersive X-ray spectroscopy were used to characterize the physiochemical properties of the samples. The electrochemical performance was investigated by cyclic voltammetry, linear sweep voltammetry, and electrochemical impedance spectroscopy. We show that after incorporating Co into Ni–P, the resulting Ni x Co y P/TNAs present enhanced electrocatalytic activity due to the improved electron transfer and increased electrochemically active surface area (ECSA). In 0.5 mol L−1 H2SO4 electrolyte, the Ni x Co y P/TNAs (x = 3.84, y = 0.78) demonstrated an ECSA value of 52.1 mF cm−2, which is 3.8 times that of Ni–P/TNAs (13.7 mF cm−2). In a two-electrode system with a Pt sheet as the anode, the Ni x Co y P/TNAs presented a bath voltage of 1.92 V at 100 mA cm−2, which is an improvment of 79% over that of 1.07 V at 10 mA cm−2.


2019 ◽  
Vol 10 ◽  
pp. 1754-1767
Author(s):  
Ilka Simon ◽  
Julius Hornung ◽  
Juri Barthel ◽  
Jörg Thomas ◽  
Maik Finze ◽  
...  

NiGa is a catalyst for the semihydrogenation of alkynes. Here we show the influence of different dispersion times before microwave-induced decomposition of the precursors on the phase purity, as well as the influence of the time of microwave-induced decomposition on the crystallinity of the NiGa nanoparticles. Microwave-induced co-decomposition of all-hydrocarbon precursors [Ni(COD)2] (COD = 1,5-cyclooctadiene) and GaCp* (Cp* = pentamethylcyclopentadienyl) in the ionic liquid [BMIm][NTf2] selectively yields small intermetallic Ni/Ga nanocrystals of 5 ± 1 nm as derived from transmission electron microscopy (TEM) and high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) and supported by energy-dispersive X-ray spectrometry (EDX), selected-area energy diffraction (SAED) and X-ray photoelectron spectroscopy (XPS). NiGa@[BMIm][NTf2] catalyze the semihydrogenation of 4-octyne to 4-octene with 100% selectivity towards (E)-4-octene over five runs, but with poor conversion values. IL-free, precipitated NiGa nanoparticles achieve conversion values of over 90% and selectivity of 100% towards alkene over three runs.


1998 ◽  
Vol 533 ◽  
Author(s):  
Glenn G. Jernigan ◽  
Conrad L. Silvestre ◽  
Mohammad Fatemi ◽  
Mark E. Twigg ◽  
Phillip E. Thompson

AbstractThe use of Sb as a surfactant in suppressing Ge segregation during SiGe alloy growth was investigated as a function of Sb surface coverage, Ge alloy concentration, and alloy thickness using xray photoelectron spectroscopy, x-ray diffraction, and transmission electron microscopy. Unlike previous studies where Sb was found to completely quench Ge segregation into a Si capping layer, we find that Sb can not completely prevent Ge segregation while Si and Ge are being co-deposited. This results in the production of a non-square quantum well with missing Ge at the beginning and extra Ge at the end of the alloy. We also found that Sb does not relieve strain in thin films but does result in compositional or strain variations within thick alloy layers.


Nanomaterials ◽  
2019 ◽  
Vol 9 (2) ◽  
pp. 245 ◽  
Author(s):  
Sada Venkateswarlu ◽  
Saravanan Govindaraju ◽  
Roopkumar Sangubotla ◽  
Jongsung Kim ◽  
Min-Ho Lee ◽  
...  

The enormous ongoing industrial development has caused serious water pollution which has become a major crisis, particularly in developing countries. Among the various water pollutants, non-biodegradable heavy metal ions are the most prevalent. Thus, trace-level detection of these metal ions using a simple technique is essential. To address this issue, we have developed a fluorescent probe of Au/C nanodots (GCNDs-gold carbon nanodots) using an eco-friendly method based on an extract from waste onion leaves (Allium cepa-red onions). The leaves are rich in many flavonoids, playing a vital role in the formation of GCNDs. Transmission electron microscopy (TEM) and Scanning transmission electron microscopy-Energy-dispersive X-ray spectroscopy (STEM-EDS) elemental mapping clearly indicated that the newly synthesized materials are approximately 2 nm in size. The resulting GCNDs exhibited a strong orange fluorescence with excitation at 380 nm and emission at 610 nm. The GCNDs were applied as a fluorescent probe for the detection of Hg2+ ions. They can detect ultra-trace concentrations of Hg2+ with a detection limit of 1.3 nM. The X-ray photoelectron spectroscopy results facilitated the identification of a clear detection mechanism. We also used the new probe on a real river water sample. The newly developed sensor is highly stable with a strong fluorescent property and can be used for various applications such as in catalysis and biomedicine.


2019 ◽  
Vol 79 (7) ◽  
pp. 1276-1286 ◽  
Author(s):  
Tijani Hammedi ◽  
Mohamed Triki ◽  
Mayra G. Alvarez ◽  
Jordi Llorca ◽  
Abdelhamid Ghorbel ◽  
...  

Abstract This paper is built on the Fenton-like oxidation of p-hydroxybenzoic acid (p–HBZ) in the presence of H2O2 and 3%Fe supported on CeO2-TiO2 aerogels under mild conditions. These catalysts were deeply characterized by X-ray diffraction (XRD), hydrogen temperature programmed reduction (H2-TPR), transmission electron microscopy (TEM), scanning transmission electron microscopy (STEM) and X-ray photoelectron spectroscopy (XPS). The effect of thermal treatment, pH (2–3, 5, 7), H2O2/p–HBZ molar ratio (5, 15, 20, 25) and reaction temperature (25 °C, 40 °C and 60 °C) on the catalytic properties of supported Fe catalysts are studied. Our results highlight the role of CeO2 and the calcination of the catalyst to obtain the highest catalytic properties after 10 min: 73% of p–HBZ conversion and 52% of total organic carbon (TOC) abatement.


Sign in / Sign up

Export Citation Format

Share Document